PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mobility of shale drill cuttings constituents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study focuses on the abundance and mobility of metals and trace elements from shale drill cuttings into water, being the main component of the hydraulic fracturing fluid. The relationship between composition of the shale rock and the potential element release during standard water-based leaching tests was characterized by means of X-Ray Fluorescence spectroscopy (XRF). The XRF analysis confirmed the assumption of shales constituents mobility due to the water-rocks interaction. The mobility of studied constituents was expressed by means of variations in content of individual elements. Increased pH of leachates obtained as a result of water based leaching medium indicated releasing of alkaline origin components such as Ca, Rb, Mo, Sr. Measurements of TOC of the leachates indicated low levels of dissolved organic carbon.
Słowa kluczowe
Rocznik
Strony
795--810
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
  • Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Poland
autor
  • Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Poland
autor
  • Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Poland
Bibliografia
  • 1. ALEXANDER T., BAIHLY J., BOYER C., CLARK B., WATERS G., JOCHEN V., LE CALVEZ J., LEWIS R., MILLER C.K. and Thaeler J. Shale gas revolution Oilfield Review 23(3): 40-55, 2011.
  • 2. AYDEMIR A. Comparison of Mississippian Barnett Shale, Northern-Central Texas, USA and Silurian Dadas Formation in Southeast Turkey Journal of Petroleum Science and Engineering 80(1): 81-93, 2011.
  • 3. BAI B., ELGMATI M., ZHANG H., WEI M. Rock characterization of Fayetteville shale gas plays Fuel, 2012.
  • 4. BANESCHI I., NATALI C., BOSCHI C., CHIARANTINI L., GUIDI M. (2013). Investigation of Chromium and Nickel mobility in serpentinite soils and rocks: Impact into groundwaters and influences of carbonation. EGU General Assembly Conference Abstracts.
  • 5. BRUMSACK H.-J., The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation Palaeogeography, Palaeoclimatology, Palaeoecology 232(2): 344-361, 2006.
  • 6. BRUNER K.R., SMOSNA R. A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin. National Energy Technology Laboratory, DOE/NETL-2011/1478, 2011.
  • 7. CALMANO W., HONG J., FOERSTNER U., Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential Water science and technology 28: 223-223, 1993.
  • 8. CHAPMAN E.C., CAPO R.C., STEWART B.W., KIRBY C.S., HAMMACK R.W., SCHROEDER K.T., EDENBORN H.M. Geochemical and strontium isotope characterization of produced waters from Marcellus Shale natural gas extraction Environmental science & technology 46(6): 3545-3553, 2012.
  • 9. COMER J.B., Stratigraphic Analysis of the Upper Devonian Woodford Formation, Permian Basin, West Texas and Southeastern New Mexico, Bureau of Economic Geology, University of Texas at Austin, 1991.
  • 10. DIX M., SPAIN D., SANO J., RATCLIFFE K., HUGHES S., CASARTA N., BULLER D. (2010). Application of Whole-Rock Elemental Data in Shale-Gas Development: An Example from the Jurassic Haynesville Formation. EAGE Shale Workshop 2010.
  • 11. DURAND B., Kerogen: insoluble organic matter from sedimentary rocks, Editions technip, 1980.
  • 12. EHLERS E.G., The mechanism of lightweight aggregate formation Am. Ceram. Soc. Bull 37(2): 95-99, 1958.
  • 13. EIA. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States. Washington, Independent Statistics & Analysis, 2013.
  • 14. ETTENSOHN F.R., BARRON L.S., Depositional model for the Devonian-Mississippian black-shale sequence of North America: a tectono-climatic approach, Kentucky Univ., Lexington (USA). Dept. of Geology, 1981.
  • 15. FAKHRU’L-RAZI A., PENDASHTEH A., ABDULLAH L.C., BIAK D.R.A., MADAENI S.S., ABIDIN Z.Z., Review of technologies for oil and gas produced water treatment Journal of Hazardous Materials 170(2): 530-551, 2009.
  • 16. Falk H., Lavergren U. and Bergbäck B. Metal mobility in alum shale from Öland, Sweden Journal of geochemical exploration 90(3): 157-165, 2006.
  • 17. FRANUS M., LATOSIŃSKA J. Wstępna ocena możliwości zastosowania zużytego złoża glaukonitowego jako surowca do produkcji kruszywa keramzytowego Politechnika Lubelska: 17, 2009.
  • 18. GOLDSCHMIDT V.M., Geochemistry. Soil Science. 78: 156, 1954.
  • 19. HAMMES U., FRÉBOURG G., Haynesville and Bossier mudrocks: A facies and sequence stratigraphic investigation, East Texas and Louisiana, USA Marine and Petroleum Geology 31(1): 8-26, 2012.
  • 20. HARRELL J.A., BELSITO M.E., KUMAR A., Radon hazards associated with outcrops of Ohio Shale in Ohio Environmental Geology and Water Sciences 18(1): 17-26, 1991.
  • 21. HARRIS N.B., Trace Elements and Basin Processes: Woodford Shale, Permian Basin, West Texas AAPG 2013 Annual Convention and Exhibition, Pittsburgh, Pennsylvania 2013.
  • 22. HEASMAN L., VAN DER SLOOT H., QUEVAUVILLER P., Harmonization of leaching/extraction tests, Elsevier Science, 1997.
  • 23. JAEGER J.C., COOK N.G., ZIMMERMAN R., Fundamentals of rock mechanics, 2009.
  • 24. JARVIE D.M., HILL R.J., POLLASTRO R.M., Assessment of the gas potential and yields from shales: The Barnett Shale model Oklahoma Geological Survey Circular 110: 9-10, 2005.
  • 25. JARVIE D.M., HILL R.J., RUBLE T.E., POLLASTRO R.M., Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment AAPG bulletin 91(4): 475-499, 2007.
  • 26. JENG A.S., Weathering of some Norwegian alum shales, II. Laboratory simulations to study the influence of aging, acidification and liming on heavy metal release Acta Agriculturae Scandinavica B-Plant Soil Sciences 42(2): 76-87, 1992.
  • 27. JOHNSON B.M., KANAGY L.E., RODGERS JR J.H., CASTLE J.W., Chemical, physical, and risk characterization of natural gas storage produced waters Water, Air, and Soil Pollution 191(1-4): 33-54, 2008.
  • 28. KENNEDY M.J., PEVEAR D.R., HILL R.J., Mineral surface control of organic carbon in black shale Science 295(5555): 657-660, 2002.
  • 29. KIDDER D.L., KRISHNASWAMY R., MAPES R.H., Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis Chemical Geology 198(3): 335-353, 2003.
  • 30. KLEIN W., 3.1 Mobility of Environmental Chemicals, Including Abiotic Degradation, 1989.
  • 31. LAVERGREN U., ÅSTRÖM M.E., BERGBÄCK B., HOLMSTRÖM H., Mobility of trace elements in black shale assessed by leaching tests and sequential chemical extraction Geochemistry: Exploration, Environment, Analysis 9(1): 71-79, 2009.
  • 32. LIS J., PAMPUCH R., Spiekanie, Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków, 2000.
  • 33. MAINALI P., Chemostratigraphy And The Paleoceanography Of The Bossier-Haynesville Formation, East Texas Basin, Texas and LA, USA, 2012.
  • 34. MARCINKOWSKI B., MYCIELSKA-DOWGIAŁŁO E., Heavy-mineral analysis in Polish investigations of Quaternary deposits: a review Geologos 19(1-2): 5-23, 2013.
  • 35. METWALLY Y.M., CHESNOKOV E.M., Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale Applied Clay Science 55: 138-150, 2012.
  • 36. ONUOHA I.E., BILGESU H.I., AMERI S. (2011). Study of Drilling Fluid Additives and Their Impact on Smectite Inhibition, Marcellus Shale Inhibition, and Filtration and Rheological Properties of Bentonite Based Drilling Fluids. SPE Eastern Regional Meeting.
  • 37. ORTH C.J., QUINTANA L.R., GILMORE J.S., GRAYSON R.C., WESTERGAARD E.H., Trace-element anomalies at the Mississippian/Pennsylvanian boundary in Oklahoma and Texas Geology 14(12): 986-990, 1986.
  • 38. PENG B., SONG Z., TU X., XIAO M., WU F., LV H. Release of heavy metals during weathering of the Lower Cambrian Black Shales in western Hunan, China Environmental Geology 45(8): 1137-1147, 2004.
  • 39. POPRAWA P., System węglowodorowy z gazem ziemnym w łupkach–północnoamerykańskie doświadczenia i europejskie perspektywy Przegląd Geologiczny 58(3): 216-225, 2010.
  • 40. RADER L.F., GRIMALDI F.S. Chemical analyses for selected minor elements in Pierre shale, US Government Printing Office, 1961.
  • 41. RIPLEY E.M., SHAFFER N.R., GILSTRAP M.S., Distribution and geochemical characteristics of metal enrichment in the New Albany Shale (Devonian-Mississippian), Indiana Economic Geology 85(8): 1790-1807, 1990.
  • 42. TESSIER A., CAMPBELL P.G., BISSON M., Sequential extraction procedure for the speciation of particulate trace metals Analytical chemistry 51(7): 844-851, 1979.
  • 43. TUTTLE M.L., BREIT G.N., GOLDHABER M.B., Weathering of the New Albany Shale, Kentucky: II. Redistribution of minor and trace elements Applied Geochemistry 24(8): 1565-1578, 2009.
  • 44. VINE J.D., TOURTELOT E.B. Geochemistry of black shale deposits; a summary report Economic Geology 65(3): 253–272, 1970.
  • 45. ZHU Y., LIU E., MARTINEZ A., PAYNE M.A., HARRIS C.E. Understanding geophysical responses of shale-gas plays The Leading Edge 30(3): 332–338, 2011.
  • 46. ZOU C., DONG D., WANG S., LI J., LI X., WANG Y., LI D., CHENG K. Geological characteristics and resource potential of shale gas in China Petroleum Exploration and Development 37(6): 641–653, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e93295e7-a244-4c54-a600-94a857fa605f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.