PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time-dependent growth of the dendritic silver prepared using square wave voltammetry technique for methylene blue photodegradation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Silver (Ag) particle is a promising photocatalyst material with relatively high catalytic activity and good absorption in the visible light region. A dendritic structure of Ag has been studied in the purpose to enhance photocatalytic activity due to a large surface area and active site number of the metallic Ag particles. In this work, the Ag dendritic structure was synthesized from a surfactant-free electrolyte using the square wave voltammetry technique. The time-dependent growth of the Ag dendrites and their photocatalytic activity on methylene blue (MB) photodegradation are reported. Morphological analysis exhibits the fractal dendritic structure of Ag was found to continuously grow by increasing the deposition time. The Ag dendrites showed a low charge transfer resistance (366.21 Ω) and high specific capacitance (2.09 F/g). A high rate of MB degradation (45.57%) under ultraviolet irradiation indicated that the Ag dendrites produced using this technique are effective for the photocatalytic degradation of MB dye.
Rocznik
Strony
60--65
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jl. Rawamangun Muka, Jakarta 13220, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jl. Rawamangun Muka, Jakarta 13220, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jl. Rawamangun Muka, Jakarta 13220, Indonesia
autor
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jl. Rawamangun Muka, Jakarta 13220, Indonesia
Bibliografia
  • 1. Stoyanova, A., Bachvarova-Nedelcheva, A. & Iordanova R. (2018). Photocatalytic degradation of two azo-dyes in single and binary mixture by La modified Tio2. J. Chem. Technol. Metall. 53(6), 1173–1178. DOI:
  • 2. Opoku, F., Govender, K.K., Van Sittert, C.G.C.E. & Govender, PP. (2017). Recent Progress in the Development of Semiconductor-Based Photocatalyst Materials for Applications in Photocatalytic Water Splitting and Degradation of Pollutants. Adv. Sustain Syst. 1(7), 1–24. DOI:10.1002/adsu.201700006.
  • 3. Umar, A.A., Rahmi, E., Balouch, A., Rahman, M.Y.A., Salleh, M.M. & Oyama, M. (2014). Highly-reactive AgPt nanofern composed of {001}-faceted nanopyramidal spikes for enhanced heterogeneous photocatalysis application. J. Mater. Chem. A 2(41), 17655–17665. DOI: DOI:10.1039/c4ta03518f.
  • 4. Abdullah, N.A., Bakar, N.A., Shapter, J.G., Salleh, M.M. & Umar, A.A. (2017). Synthesis of silver-platinum nanoferns substrates used in surface-enhanced Raman spectroscopy sensors to detect creatinine. Adv. Nat. Sci. Nanosci. Nanotechnol. 8(2), 1–4. DOI:10.1088/2043-6254/aa687f.
  • 5. Hammad, A., Anzai, A., Zhu, X., Yamamoto, A., Oot-suki, D., Yoshida, T., EL-Shazly, A., Elkady, M. & Yoshida, H. (2020). Photodeposition Conditions of Silver Cocatalyst on Titanium Oxide Photocatalyst Directing Product Selectivity in Photocatalytic Reduction of Carbon Dioxide with Water. Catal Letters 150(4), 1081–1088. DOI: 10.1007/s10562-019-02997-z.
  • 6. Xie, J., Zeng, Y., Yang, X. & Xu, X. (2017). Electrodeposition of silver dendritic-graphene composite film for photocatalytic application. Int. J. Electrochem. Sci. 12(3), 1690–1699. DOI: 10.20964/2017.03.49.
  • 7. Yin, X., Que, W. & Shen, F. (2011). ZnO nanorods arrays with Ag nanoparticles on the (002) plane derived by liquid epitaxy growth and electrodeposition process. Thin Solid Films 520(1), 186–192. DOI: 10.1016/j.tsf.2011.07.016.
  • 8. Ding, C., Tian, C., Krupke, R. & Fang, J. (2012). Growth of non-branching Ag nanowires via ion migrational-transport controlled 3D electr odeposition. Cryst. Eng. Commun. 14(3), 875–879. DOI: 10.1039/c1ce05686g.
  • 9. Li, Z., Du, Z. & He, X. (2017). Template-assisted electrodeposition of urchinlike Ag-nanoplate-assembled nanorod arrays and their structurally enhanced SERS performance. J. Electrochem. Soc. 164(13), 895–900. DOI: 10.1149/2.1351713jes.
  • 10. Liu, S., Xu, Z., Sun, T., Zhao, W., Wu, X., Ma, Z., Zhang, X., He, J. & Chen, C. (2014). Polymer-Templated Electrodeposition of Ag Nanosheets Assemblies Array as Reproducible Surface-Enhanced Raman Scattering Substrate. J. Nanosci. Nanotechnol. 14(6), 4608–4614. DOI: 10.1166/jnn.2014.9036.
  • 11. Fu, L., Wang, A., Zheng, Y., Cai, W. & Fu, Z. (2015). Electrodeposition of Ag dendrites/AgCl hybrid film as a novel photodetector. Mater Lett 142, 119–121. DOI: 10.1016/j.matlet.2014.12.001.
  • 12. Dhanasmoro, L. & Budi, S. (2019). Surfactant-Free Electrodeposition of Ag Dendrites as Photocatalyst for Methylene Blue Degradation. IOP Conf. Ser. Mater. Sci. Eng. 686(1), 1–6. DOI: 10.1088/1757-899X/686/1/012028.1.
  • 13. Chan, Y.F., Zhang, C.X., Wu, Z.L., Zhao, D.M. & Wang, W. (2013). Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering. Appl. Phys. Lett. 102, 1–5 DOI: 10.1063/1.4803937.
  • 14. Hanafi , I., Daud, A.R., Radiman, S., Ghani, M.H.A. & Budi, S. (2013). Surfactant assisted electrodeposition of nanostructured CoNiCu alloys. J. Phys. Conf. Ser. 431(1), 1–6. DOI: 10.1088/1742-6596/431/1/012013.
  • 15. Sivasubramanian, R. & Sangaranarayanan, M.V. (2015). A facile formation of silver dendrites on indium tin oxide surfaces using electrodeposition and amperometric sensing of hydrazine. Sensors Actuators, B: Chem. 213, 92–101. DOI: 10.1016/j.snb.2015.02.065.
  • 16. Xia, L.T., Wei, G.Y., Li, M.G., Guo, H.F., Fu, Y. & Dettinger, H. (2014). Preparation of Co–Pt–P thin films by magnetic electrodeposition. Mater. Res. Innov. 18(5), 386–391. DOI: 10.1179/1433075X13Y.0000000154.
  • 17. Zhou, Q., Wang, S., Jia, N., Liu, L., Yang, J. & Jiang, Z. (2006). Synthesis of highly crystalline silver dendrites microscale nanostructures by electrodeposition. Mater. Lett. 60(29–30), 3789–3792. DOI: 10.1016/j.matlet.2006.03.115.
  • 18. Lee, J.K., Lee, J.S., Ahn, Y.S. & Kang, G.H. (2018). Effect of current density on morphology of silver thin film recovered from crystalline silicon solar cell by electrochemical process. Thin Solid Films 663, 143–147. DOI: 10.1016/j.tsf.2018.08.021.
  • 19. Agrawal, V.V., Kulkarni, G.U. & Rao, C.N.R. (2008). Surfactant-promoted formation of fractal and dendritic nanostructures of gold and silver at the organic – aqueous interface. J. Coll. Interface Sci. 318(2), 501–506. DOI: 10.1016/j.jcis
  • 20. Budi, S., Tawwabin, R.A., Cahyana, U. & Paristiowati, M. (2020). Saccharin-assisted Galvanostatic Electrodeposition of Nanocrystalline FeCo Films on a Flexible Substrate. Int. J. Electrochem. Sci. 15, 6682–6694. DOI: 10.20964/2020.07.74
  • 21. Budi, S., Kurniawan, B., Mott, D.M., Maenosono, S., Umar, A.A. & Manaf, A. (2017). Comparative trial of sac-charin-added electrolyte for improving the structure of an electrodeposited magnetic FeCoNi thin film. Thin Solid Films 642, 51–57. DOI: 10.1016/j.tsf.2017.09.017
  • 22. Jiang, G., Wang, L.I., Chen, T.A.O., Yu, H. & Wang, J. (2005). Preparation and characterization of dendritic silver nanoparticles. J. Mater. Sci. 40, 1681–1683. DOI: 10.1007/s10853-005-0669-9.
  • 23. Liu, J., Wang, X., Lin, Z., Cao, Y., Zheng, Z., Zeng, Z & Hu, Z. (2014). Electrochimica Acta Shape-Controllable Pulse Electrodeposition of Ultrafine Platinum Nanodendrites for Methanol Catalytic Combustion and the Investigation of their Local Electric Field Intensification by Electrostatic Force Microscope and Finite Element M. Electrochim Acta 136, 66–74. DOI: 10.1016/j.electacta.2014.05.082.
  • 24. Inamuddin. (2019). Xanthan gum/titanium dioxide nanocomposite for photocatalytic degradation of methyl orange dye. Int. J. Biol. Macromol. 121, 1046–1053. DOI: 10.1016/j.ijbiomac.2018.10.064.
  • 25. Yao, H., Li, F., Lutkenhaus, J., Kotaki, M. & Sue, H.J. (2016). High-performance photocatalyst based on nanosized ZnO-reduced graphene oxide hybrid for removal of Rhodamine B under visible light irradiation. AIMS Mater. Sci. 3(4), 1410–1425. DOI: 10.3934/matersci.2016.4.1410.
  • 26. Cheng, Z.Q., Li, Z.L., Luo, X., Shi, H.Q., Luo, C.L., Liu, Z.M. & Nan, F. (2019). Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles. Appl. Phys. Lett. 114(1), 1–4. DOI: 10.1063/1.5079241.
  • 27. Bu, Y. & Lee, S.W. (2015). Flower-like gold nanostructures electrodeposited on indium tin oxide (ITO) glass as a SERS-active substrate for sensing dopamine. Microchim. Acta 182(7–8), 1313–1321. DOI: 10.1007/s00604-015-1453-4.
  • 28. Caglar, M. Ilican, S. Caglar, Y. & Yakuphanoglu, F. (2009). Electrical conductivity and optical properties of ZnO nanostructured thin film. Appl. Surf. Sci. 255(8), 4491–4496. DOI: https://doi.org/10.1016/j.apsusc.2008.11.055.
  • 29. Huang, J.H. Lin, C.H. & Yu, G.P. (2019). Texture evolution of vanadium nitride thin films. Thin Solid Films 688, 137-415. DOI: 10.1016/j.tsf.2019.137415.
  • 30. Rakhi, R.B., Chen, W., Cha, D. & Alshareef, H.N. (2012). Substrate Dependent Self-Organization of Mesoporous Cobalt Oxide Nanowires with Remarkable Pseudocapacitance. Nano Lett 12, 2559–2567. DOI:
  • 31. Yin, B., Zhang, S., Jiao, Y., Liu, Y., Qu, F. & Wu, X. (2014). Facile synthesis of ultralong MnO2 nanowires as high performance supercapacitor electrodes and photocatalysts with enhanced photocatalytic activities. Cryst. Eng. 16(43), 9999–10005. DOI: 10.1039/c4ce01302f.
  • 32. Beura, R., Pachaiappan, R. & Thangadurai P. (2018). A detailed study on Sn4+doped ZnO for enhanced photocatalytic degradation. Appl. Surf. Sci. 433, 887–898. DOI: 10.1016/j.apsusc.2017.10.127.
  • 33. Oraon, R., De Adhikari, A., Tiwari, S.K. & Nayak, G.C. (2016). Enhanced Specific Capacitance of Self-Assembled Three-Dimensional Carbon Nanotube/Layered Silicate/Polyaniline Hybrid Sandwiched Nanocomposite for Supercapacitor Applications. ACS Sustain Chem. Eng. 4(3), 1392–1403. DOI: 10.1021/acssuschemeng.5b01389.
  • 34. Daraghmeh, A., Hussain, S., Saadeddin, I., Servera, L., Xuriguera, E., Cornet, A. & Cirera, A. (2017). A Study of Carbon Nanofibers and Active Carbon as Symmetric Supercapacitor in Aqueous Electrolyte: A Comparative Study. Nanoscale Res. Lett. 12(639), 1–10. DOI: 10.1186/s11671-017-2415-z.
  • 35. Mishra, N., Shinde, S., Vishwakarma, R., Kadam, S., Sharon, M. & Sharon, M. (2013). MWCNTs synthesized from waste polypropylene plastics and its application in super-capacitors. AIP Conf. Proc. 1538, 228–236. DOI: 10.1063/1.4810063.
  • 36. Arul, N.S., Mangalaraj, D., Ramachandran, R., Grace, A.N. & Han, J.I. (2015). Fabrication of CeO2/Fe2O3 composite nanospindles for enhanced visible light driven photocatalysts and supercapacitor electrodes. J. Mater. Chem. A: 3(29), 15248–15258. DOI: 10.1039/c5ta02630j
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9302319-4b23-4db4-9ad9-04c891b0d543
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.