PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Design and development of an intelligent biomechatronic tumor prosthesis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, bone cancer patients using expandable prostheses (EPs) have to go to the clinic frequently to determine the limb length and to perform the extension if necessary, as long as their age-based growth lasts. This situation brings along problems such as increased physician workload, the patient's exposure to radiation at each measurement, a larger rate of extension due to the long interval period between each extension and thus reducing patient comfort as well as making the daily life of the patient difficult. In this study, a biomechatronic tumor prosthesis which is able to determine the need for extension by means of its hardware and intelligent control structure was developed to eliminate the aforementioned problems. Mechanical analysis of the designed prosthesis has been performed in the simulation environment, the prototype of the prosthesis has been produced, wireless communication and control system have been created and the performance of the system has been tested on the experimental setup. Limb length discrepancies (LLDs) of 1 mm and above between the healthy limb and the limb with a prosthesis were able to be detected by the system, and prosthesis extension procedure was successfully performed against the maximum soft tissue resistance to be possibly encountered.
Twórcy
  • Department of Electronics and Automation, Kirklareli University, Kirklareli, Turkey
  • Department of Mechatronics Engineering, Yildiz Technical University, Istanbul, Turkey
Bibliografia
  • [1] Weitao Y, Qiqing C, Songtao G, Jiaqiang W. Epiphysis preserving operations for the treatment of lower limb malignant bone tumors. Eur J Surg Oncol 2012;38:1165–70. http://dx.doi.org/10.1016/j.ejso.2012.05.005.
  • [2] Heare T, Hensley MA, Dell&Orfano S. Bone tumors: osteosarcoma and Ewing&s sarcoma. Curr Opin Pediatr 2009;21:365–72. http://dx.doi.org/10.1097/MOP.0b013e328321111.
  • [3] Chimutengwende-Gordon M, Mbogo A, Khan W, Wilkes R. Limb reconstruction after traumatic bone loss. Injury 2017;48:206–13. http://dx.doi.org/10.1016/j.injury.2013.11.022 Integrative Medicine Research, 39 (2019) 561-570. doi:10.1016/j.bbe.2019.05.004.
  • [4] Schroeder JE, Mosheiff R. Tissue engineering approaches for bone repair: concepts and evidence. Injury 2011;42:609–13. http://dx.doi.org/10.1016/j.injury.2011.03.029.
  • [5] Turcotte RE. Endoprosthetic replacements for bone tumors: review of the most recent literature. Curr Opin Orthop 2007;18:572–8. http://dx.doi.org/10.1097/BCO.0b013e3282ef6eaf.
  • [6] Schindler OS, Cannon SR, Briggs TW, Blunn GW. Stanmore custom-made extendible distal femoral replacements. Clinical experience in children with primary malignant bone tumours. J Bone Joint Surg Br 1997;79:927–37. http://dx.doi.org/10.1302/0301-620X.79B6.7164.
  • [7] Delepine G, Delepine N, Desbois JC, Goutallier D. Expanding prostheses in conservative surgery for lower limb sarcoma. Int Orthop 1998;22:27–31. http://dx.doi.org/10.1007/s002640050202.
  • [8] Mittermayer F, Windhager R, Dominkus M, Krepler P, Schwameis E, Sluga M, et al. Revision of the Kotz type of tumour endoprosthesis for the lower limb. J Bone Joint Surg Br 2002;84:401–6.
  • [9] Schiller C, Windhager R, Fellinger EJ, Salzer-Kuntschik M, Kaider a, Kotz R. Extendable tumour endoprostheses for the leg in children. J Bone Joint Surg Br 1995;77:608–14. http://dx.doi.org/10.1097/01241398-99601000-00063.
  • [10] Borkowski P, Pawlikowski M, Skalski K. Expandable non- invasive prostheses – an alternative to pediatric patients with bone sarcoma. Eng Med Biol 2005;4056–9. http://dx.doi.org/10.1109/IEMBS.2005.1615353.
  • [11] Dotan A, Dadia S, Bickels J, Nirkin A, Flusser G, Issakov J, et al. Expandable endoprosthesis for limb-sparing surgery in children: long-term results. J Child Orthop 2010;4:391– 400. http://dx.doi.org/10.1007/s11832-010-x-0270.
  • [12] Ruggieri P, Mavrogenis AF, Pala E, Romantini M, Manfrini M, Mercuri M. KOTZ/REP/STAN: outcome of expandable prostheses in children. J Pediatr Orthop 2013;33:244–53. http://dx.doi.org/10.1097/BPO.0b013e863182c178.
  • [13] Cipriano CA, Gruzinova IS, Frank RM, Gitelis S, Virkus WW. Frequent complications and severe bone loss associated with the repiphysis expandable distal femoral prosthesis. Clin Orthop Relat Res 2015;473:831–8. http://dx.doi.org/10.1007/s11999-014-35643.
  • [14] Neel MD, Wilkins RM, Rao BN, Kelly CM. Early multicenter experience with a noninvasive expandable prosthesis. Clin Orthop Relat Res 2003;415:72–81. http://dx.doi.org/10.1097/01.blo.0000093899.2.123725.
  • [15] Gupta A, Meswania J, Blunn G, Cannon SR, Briggs TWR. Stanmore non-invasive growing arthrodesis endoprosthesis in the reconstruction of complicated total knee arthroplasty. A case report. Knee 2006;13:247–51. http://dx.doi.org/10.1016/j.knee.2006.01.002.
  • [16] Meswania JM, Taylor SJG, Blunn GW. Design and characterization of a novel permanent magnet synchronous motor used in a growing prosthesis for young patients with bone cancer. Proc Inst Mech Eng Part H: J Eng Med 2008;222:393–402. http://dx.doi.org/10.1243/09544119JEIM247.
  • [17] Gupta A, Meswania J, Pollock R, Cannon SR, Briggs TWR, Taylor S, et al. Non-invasive distal femoral expandable endoprosthesis for limb-salvage surgery in paediatric tumours. J Bone Joint Surg Br 2006;88:649–54. http://dx.doi.org/10.1302/0301-620X.88B5.17098.
  • [18] Verkerke GJ, Schraffordt Koops H, Veth RPH, van den Kroonenberg HH, Grootenboer HJ, Nielsen HKL, et al. An extendable modular endoprosthetic system for bone tumour management in the leg. J Biomed Eng 1990;12:91–6. http://dx.doi.org/10.1016/0141-5425(90)90126-8.
  • [19] Borkowski P. Expandable non-invasive endoprostheses for growing patients. Biocybern Biomed Eng 2006;26:93–101. Integrative Medicine Research, 39 (2019) 561-570. doi:10.1016/j.bbe.2019.05.004.
  • [20] Borkowski P, Skalski K. Expandable endoprosthesis for growing patients—reliability and research. Biocybern Biomed Eng 2014;34:199–205. http://dx.doi.org/10.1016/j.bbe.2014.05.005.
  • [21] Taylor WR, Heller MO, Bergmann G, Duda GN. Tibio-femoral loading during human gait and stair climbing. J Orthop Res 2004;22:625–32. http://dx.doi.org/10.1016/j.orthres.2003.09.003.
  • [22] Bergmann G, Deuretzabacher G, Heller M, et al. Hip forces and gait patterns from rountine activities. J Biomech 2001;34:859–71. http://dx.doi.org/10.1016/S0021-9290(01)00040-9.
  • [23] Verkerke GJS. Design of a lengthening element for a modular femur endoprosthetic system. J Eng Med 1989;203:97–102.
  • [24] SimpsonF A.H., Cunningham JL, Kenwright J. The forces which develop in the tissues during leg lengthening. A clinical study. J Bone Joint Surg Br 1996;78:979–83. http://dx.doi.org/10.1097/01241398-199705000-00037.
  • [25] Meswania JM, Walker PS, Sneath RS. In vivo distraction forces in extendible endoprosthetic replacements—a study of 34 patients. Proc Inst Mech Eng H 1998;212:151–6.
  • [26] Xiao Z, Tan X, Chen X, Chen S, Zhang Z, Zhang H, et al. An implantable RFID sensor tag toward continuous glucose monitoring. IEEE J Biomed Heal Informatics 2015;19:910–9. 10.1109/JBHI.2015.2415836.
  • [27] https://www.maxonmotor.com/maxon/view/product/control/1- Q-EC-Verstaerker/3676612015:1–22. https://www.maxonmotor. com/maxon/view/product/control/1-Q-EC-Verstaerker/367661.
  • [28] Latham R, Linford R, Schlindwein W. Biomedical applications of batteries. Solid State Ionics 2004;172:7–11. 10.1016/j.ssi.2004.04.024.
  • [29] Holmes CF. Electrochemical power sources and the treatment of human illness. Electrochem Soc Interface 2003;12:26–9.
  • [30] Re-chargeable Li-Ion Batteries n.d. http://www.arpae- summit.com/paperclip/exhibitor_docs/13AE/ Quallion_LLC_36.pdf (accessed April 4, 2019).
  • [31] Implantable Medical Device Batteries Zero Volt TM Technology LITHIUM-ION MEDICAL CELLS http://www. enersys.com/WorkArea/DownloadAsset.aspx?id=25769803876.
  • [32] Marchal C, Nadi M, Tosser AJ. Dielectric properties of gelatine phantoms used for simulations of biological tissues between 10 and 50 MHz. Int J Hyperth 1989;5:725–32. http://dx.doi.org/10.3109/02656738909140497.
  • [33] Nuryani N, Ling SSH, Nguyen HT. Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection. Ann Biomed Eng 2012;40:934–45. http://dx.doi.org/10.1007/s10439-011-04467.
  • [34] Rovini E, Maremmani C, Moschetti A, Esposito D, Cavallo F. Comparative motor pre-clinical assessment in Parkinson's disease using supervised machine learning approaches. Ann Biomed Eng 2018;46:2057–68. http://dx.doi.org/10.1007/s10439-018-21049.
  • [35] Zhang J, Lockhart TE, Soangra R. Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors. Ann Biomed Eng 2014;42:600–12. http://dx.doi.org/10.1007/s10439-013-09170.
  • [36] Tsuji T, Tanaka Y. Bio-mimetic impedance control of robotic manipulator for dynamic contact tasks. Rob Auton Syst 2008;56:306–16. http://dx.doi.org/10.1016/j.robot.2007.09.001.
  • [37] Trøite Aarnes G, Steen H, Pål Kristiansen L, Ludvigsen P, Reikerås O. Tissue response during monofocal and bifocal leg lengthening in patients. J Orthop Res 2002;20:137–41. http://dx.doi.org/10.1016/S0736-0266(01)00082-1.
  • [38] Leong JC, Ma RY, Clark JA, Cornish LS, Yau AC. Viscoelastic behavior of tissue in leg lengthening by distraction.. Clin Orthop Relat Res 1979;102–9.
  • [39] Borkowski P. Expandable Non-invasive Endoprostheses for Growing Patients.. Biocybern Biomed Eng 2006.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e92f34ce-3e73-4f58-969f-7496d245ae8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.