PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

AlSb and InAs-GaSb layer thickness effect on HH-LH splitting and band gap energies in InAs/AlSb/GaSb type-II superlattices

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Advanced Infrared Technology and Applications - AITA 2013 (12 ; 10-13.09.2013 ; Turin, Italy)
Języki publikacji
EN
Abstrakty
EN
This study is based on the investigation of AlSb layer thickness effect on heavy-hole light-hole (HH-LH) splitting and band gap energies in a recently developed N-structure based on InAs/AlSb/GaSb type II superlattice (T2SL) p-i-n photodetector.eFirst principle calculations were carried out tailoring the band gap and HH-LH splitting energies for two possible interface transition alloys of InSb and AlAs between InAs and AlSb interfaces in the superlattice. Results show that AlSb and InAs-GaSb layer thicknesses enable to control HH-LH splitting energies to desired values for Auger recombination process where AlSb/GaSb total layer thickness is equal to InAs layers for the structures with InSb and AlAs interfaces.
Twórcy
  • Dept. of Education, Dumlupinar University, 06800 Kutahya, Turkey
autor
  • Dept. of Physics, Anadolu University, 26470 Eskisehir, Turkey
autor
  • Dept. of Education, Akdeniz University, 07058 Antalya, Turkey
Bibliografia
  • 1. J. Wei and M. Razeghi, “Modelling of type-11 InAs/GaSb superlattices using an empirical tight-binding method and interface engineering”, Phys. Rev. B69, 085316 (2004).
  • 2. C.H. Grcin, P.M. Young, and H. Ehrcnreich, “Minority-carrier lifetimes in ideal InGaSb/InAs superlattices”, Appl. Phys. Lett. 61, 2905-2907 (1992).
  • 3. D.L. Smith and C. Mailhiot, “Proposal for strained type-II superlattice infrared detectors”, J. Appl. Phys. 62, 2545-2548(1987).
  • 4. J.B. Rodriguez, E. Plis, G. Bishop, Y.D. Sharma, H. Kim, L.R. Dawson, and S. Krishna, “nBn structure based on InAs/GaSb type-11 strained layer superlattices”, Appl. Phys. Lett. 91,043514(2007).
  • 5. N. Gautam, H.S. Kim, M.N. Kutty, E. Plis, L.R. Dawson, and S. Krishna, “Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers”, Appl. Phys. Lett. 96, 231107 (2010).
  • 6. D.Z.Y. Ting, C.J. Hill, A. Soibel, S.A. Keo, J.M. Mumolo, J. Nguyen, and S.D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector”, Appl. Phys. Lett. 95, 023508 (2009).
  • 7. B.M. Nguyen, D. Hoffman, P.Y. Delaunay, and M. Razeghi, “Dark current suppression in type II InAs/GaSb supcrlattice long wavelength infrared photodiodes with m-structure barrier”, Appl. Phys. Lett. 91, 163511 (2007).
  • 8. O. Salihoglu, M. Hostut, T. Tansel, K. Kutlucr, A. Kilinc, M. Alyoruk, C. Sevik, R. Turan, Y. Ergun, and A. Aydinli, “Electronic and optical properties of 4.2 (tm “N” structured superlattice MWIR photodetectors”, Infrared Phys. & Tech. 59, 36-40 (2013).
  • 9. O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, R. Turan, Y. Ergun, and A. Aydinli, “N structure for type-II superlattice photodetectors”, Appl. Phys. Lett. 101, 073505 (2012).
  • 10. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas”, Phys. Rev. 136, B864-71 (1964).
  • 11. W. Kohn and L.J. Sham, “Self-consistent equations including exchange and correlation effects”, Phys. Rev. 140, A1133-38(1965).
  • 12. X. Gonze, B. Amadon, P.-M. Angladc, J.-M. Beukcn, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cóte, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S.Goedecker, D.R. Hamann, P. Hermct, F. Joliet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, and J.W. Zwanziger, “ABINIT: First-principles approach to material and nanosystem properties”, Comput. Phys. Commun. 180, 2582 (2009).
  • 13. J.P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy”, Phys. Rev. B45, 13244-49 (1992).
  • 14. D.M. Ceperley and B.J. Alder, “Ground state of the electron gas by a stochastic method”, Phys. Rev. Lett. 45. 566-569 (1980).
Uwagi
EN
Y. Ergun acknowledges the support of TUBITAK and Anadolu University (Grants from Tubitak: 109T072 and BAP:1305F108, respectively). M. Hostut also acknowledges the support of Akdeniz University (BAP Grant: 2012.01.0110.002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e92ef363-a8f5-4eae-956b-9be32cf06f4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.