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Abstract

This paper addresses the issue of data-driven smoothing parameter (bandwidth) selection
in the context of nonparametric system identification of dynamic systems. In particu-
lar, we examine the identification problem of the block-oriented Hammerstein cascade
system. A class of kernel-type Generalized Regression Neural Networks (GRNN) is em-
ployed as the identification algorithm. The statistical accuracy of the kernel GRNN esti-
mate is critically influenced by the choice of the bandwidth. Given the need of data-driven
bandwidth specification we propose several automatic selection methods that are com-
pared by means of simulation studies. Our experiments reveal that the method referred
to as the partitioned cross-validation algorithm can be recommended as the practical pro-
cedure for the bandwidth choice for the kernel GRNN estimate in terms of its statistical
accuracy and implementation aspects.
Keywords: Generalized regression neural networks, nonparametric estimation, band-
width, data-driven selection, nonlinear systems, Hammerstein systems.

1 Introduction

The goal of system identification is to build math-
ematical models of dynamic systems from ob-
served input-output data. This fundamental mod-
eling problem has found applications in various
fields of science and engineering, e.g., communi-
cation, signal processing, control systems, power
engineering, biomedical engineering, chemical pro-
cesses, and financial modeling [1, 2, 3, 4, 5]. For
the comprehensive overview of the field we refer to
[6, 7, 8, 9, 10, 11].
The accuracy of an identification algorithm criti-
cally depends on the assumed class of models and

the size and quality of the observed data. There are
two distinct strategies to specify a class of mod-
els, i.e., the parametric specification and the non-
parametric one. In the latter case, one makes no
functional assumptions on the system character-
istics and as a result the identification procedure
must be conducted in the infinite dimensional space
[6, 12, 13]. In contrast, in the parametric approach
the identification procedure is performed in the fi-
nite dimensional space spanned by a vector of un-
known parameters [11]. These two strategies are
particularly manifested in the field of nonlinear dy-
namic system identification [11], where one en-
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counters a wide class of nonlinearities and mem-
ory structures. The choice between parametric and
nonparametric approaches to system identification
depends on the data size, dimensionality and mem-
ory length.

A parsimonious strategy for nonlinear system
identification is based on the concept of semipara-
metric block-oriented models which are character-
ized by the separation between static nonparamet-
ric nonlinearities and linear parametric dynamical
systems [8]. These models often reflect the physi-
cal nature of the examined system, where one en-
counters nonlinear sensors and actuators. There is
a large number of combinations of nonlinear/linear
elements that define block-oriented dynamic mod-
els. The series/parallel structures are the most pop-
ular choices with numerous applications in control,
signal processing and biological systems [14, 15,
16, 17, 18, 19, 20]. This includes popular cas-
cade models as Hammerstein, Wiener, sandwich,
and their parallel counterparts.

In this paper we examine the commonly used
Hammerstein block-oriented system being a series
connection of a nonlinear static characteristic fol-
lowed by a linear dynamical system. This config-
uration defines the basic building block for other
more involved block-oriented models. The struc-
ture of the Hammerstein system is depicted in Fig-
ure 1.

Figure 1. Hammerstein system with input Ut and
output Yt

The system consists of the cascade of a memo-
ryless nonlinearity m(·) and a linear time invariant
subsystem with the impulse response {λi}. The sig-
nal Vt = m(Ut) defines the input signal to the linear
subsystem, where {Ut} is the input signal assumed
to be the iid process with the density f (·). Hence,
we have

Wt =
∞

∑
i=0

λiVt−i, (1)

where we assume that the liner sub-system is stable,
i.e., ∑∞

i=0 |λi|< ∞.
The output Wt of the linear part is disturbed by the

additive white noise Zt , i.e., we measure the output
signal Yt =Wt +Zt .

The identification problem for the Hammerstein
system is to recover both nonlinear and linear parts
of the system from the measured input-output train-
ing data

Tn = {(U1,Y1), . . . ,(Un,Yn)} . (2)

It is worth noting that the signals Vt and Wt are un-
observable. The critical part of the Hammerstein
system is its nonlinearity m(·) which, in this paper,
is assumed to be unknown and of the nonparamet-
ric form. This calls for nonparametric identification
algorithms that can consistently recover m(·).

It is worth mentioning that the cascade structure
of the Hammerstein system implies that m(·) can be
estimated up to some scaling and additive parame-
ters, i.e., one can only recover µ(u) = am(u)+b for
some unknown constants a,b. This is easily seen by
writing the input-output relationship as follows

Yt = λ0m(Ut)+
∞

∑
i=1

λim(Ut−i)+Zt . (3)

Then, owing to the iid nature of the input signal we
obtain

E[Yt |Ut = u] = am(u)+b, (4)

where a = λ0 and b = E[m(U)]∑∞
i=1 λi. Therefore,

if the following assumption

E[m(U)] = 0 and λ0 = 1 (5)

holds then a = 1 and b = 0.
In this paper we are interested in the problem of
the bandwidth selection for a class of Generalized
Regression Neural Networks estimates of m(·) and
the multiplicative/additive scaling has no influence
on the accuracy of the examined methods. Hence,
without loss of generality, the assumption in (5)
will be assumed to hold. Consequently, we have
E[Yt |Ut = u] = m(u), i.e., the system nonlinearity
m(u) can be uniquely recovered from the regression
function E[Yt |Ut = u] of the output signal on the in-
put one. This takes place for any linear subsystem
characterized by the impulse response {λi}. The
issue of estimating the nonparametric nonlinearity
m(·) is discussed in the next section.
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2 The Kernel GRNN Estimate

Without imposing any a priori information on the
shape of m(·) one can apply the existing nonpara-
metric regression estimates in order to recover the
system nonlinearity m(·). Various nonparametric
estimation techniques can be applied in this con-
text including kernel, orthogonal series and nearest
neighbor estimates [6, 21, 12].

In this paper we utilize a class of kernel Gener-
alized Regression Neural Networks (GRNN) orig-
inally introduced in [22], see also [23] for some
more recent results. The kernel GRNN estimate is a
single-layer feed-forward neural network that uses
the normalized kernels in the hidden layer as activa-
tion functions. Moreover, each activation function
is scaled by the smoothing parameter (bandwidth)
that controls the network input-output mapping
complexity. In fact, the large value of bandwidth
leads to a linear model, whereas the small band-
width results in the highly complex input-output
mapping. The kernel GRNN structure does not re-
quire any back-propagation learning algorithm as it
is given in the following explicit form

m̂h(u) =
∑n

i=1 Kh(u−Ui)Yi

∑n
j=1 Kh(u−Uj)

, (6)

where Kh(·) = h−1K(·/h) is the scaled version of
the kernel function K(·). The kernel function K(·)
can be selected as any symmetric density function.
The parameter h (bandwidth) must be properly se-
lected as it plays the critical role in the statistical
accuracy of the estimate m̂h(u). In fact, if h is
too small then a few data points will be effectively
included into the local averaging and the estimate
m̂h(u) would have too many spikes being the il-
lustration of the large estimate variance. On the
other hand, if h is too large then too many local
data points would be included into the local aver-
aging and the estimate m̂h(u) would be too smooth
reflecting the large estimate bias. Both of these
two scenarios would lead to imprecise models with
high prediction and estimation errors. Therefore,
the proper selection of h is crucial for the practical
use of the kernel GRNN estimate. To quantitatively
explain this variance/bias dilemma let us consider
the mean integrated squared error

MISE(h) = E
∫

S
[m̂h(u)−m(u)]2w(u)du, (7)

where w(u) is the weight function and S is the sup-
port of the input density f (u). Some standard al-
gebra, see [6], yields the following asymptotic de-
composition of MISE(h)

σ2

nh
k1

∫

S

w(u)
f (u)

du+
h4

4
k2

2

∫

S
φ2(u)w(u)du, (8)

where σ2 = E[m2(U)]∑∞
i=1 λ2

i +σ2
Z . Here σ2

Z is the
variance of the additive external noise Zt . Also
k1 =

∫
K2(u)du, k2 =

∫
u2K(u)du and

φ(u) =
m(2)(u) f (u)+2m(1)(u) f (1)(u)

f (u)
.

In the formula in (8) the first terms represents the
asymptotic variance, whereas the second one is the
asymptotic bias. It is clear that the variance term
is the decreasing function of h, while the bias is a
increasing function of h confirming the aforemen-
tioned discussion on the variance/bias tradeoff. The
direct minimization of (8) shows that the asymp-
totic optimal value of h is

hopt =Cn−1/5, (9)

where C is the unknown constant depending on
the Hammerstein system characteristics, i.e., m(·),
{λi}, σ2

Z and the input density f (·). Hence, hopt

cannot be used in practical applications.
The data-driven choices of h rely on various resam-
pling techniques that are used for estimating the
prediction error. Note that if w(u) = f (u) in (7)
then we can re-write MISE(h) as follows

MISE(h) = E[m̂h(Ut)−m(Ut)]
2, (10)

for some Ut being independent of the training set Tn

in (2). The ideal value of h would be the one that
minimizes MISE(h) in (10). By virtue of (3) and
(5) we can write

Yt = m(Ut)+ εt , (11)

where εt = ∑∞
i=1 λim(Ut−i)+Zt represents the over-

all noise added to the system nonlinearity. This
noise has a complex correlation structure as it de-
pends on the linear and nonlinear parts of the sys-
tem. Since εt is independent on Ut , we observe that
the minimization of MISE(h) in (10) is equivalent
to the minimization of the following prediction er-
ror

CMISE(h) = E[m̂h(Ut)−Yt ]
2, (12)
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where the input-output pair (Ut ,Yt) is independent
of the training set Tn in (2). Clearly, the minimiza-
tion of CMISE(h) is impossible since we do not
know the distribution of the input-output data. The
naive estimate of CMISE(h) based on Tn would be

RE(h) =
1
n

n

∑
i=1

[Yi − m̂h(Ui)]
2. (13)

This is the residual square error that, once it is min-
imized, produces the bandwidth value yielding the
kernel GRNN estimate with very large variance.

The problem of the data-driven bandwidth se-
lection for standard kernel estimates has been ex-
tensively examined in the statistical literature [24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. In these con-
tributions the classical regression model

Yt = m(Ut)+ εt (14)

with the iid noise {εt} has been mostly studied.
Various cross-validation (CV) methods have been
established with some proved favourable statistical
properties.

In the case when the noise process {εt} is cor-
related the proposed methods fail to estimate the
proper bandwidth value. In fact, the obtained band-
width is either too large or too small depending
on the sign of the correlation function of {εt}. To
fix the aforementioned deficiency several modified
CV algorithms have been proposed that accom-
modate the correlation nature of the noise process
[28, 29, 30, 31, 32, 33, 34]. However, in most of
these contributions, the input signal is assumed to
be non-random (fix design regression) and the noise
process {εt} meets some mixing properties. These
two assumptions do not hold in the context of the
Hammerstein system. In fact, due to (11) the Ham-
merstein system is of the form as in (14). However,
the error term εt = ∑∞

i=1 λim(Ut−i)+Zt is correlated
and depends on both the linear and nonlinear parts
of the system as well as on the external additive
noise Zt . Moreover, it can be shown, see [13], that
the noise process {εt} appearing in the Hammer-
stein system is not necessarily mixing. Thus, we are
faced with much more complicated data structure
compared to the aforementioned cases studied in
the statistical literature [28, 29, 30, 31, 32, 33, 34].

In this paper, we examine the three carefully se-
lected cross-validation methods for the data-driven

bandwidth selection. The accuracy of these meth-
ods will be evaluated by mens of simulation stud-
ies for various combinations of nonlinear and linear
components of the Hammerstein system. The theo-
retical properties of the methods will be examined
elsewhere.

The rest of the paper is organized as follows. In
Section 3 we introduce the data-driven algorithms
for the bandwidth selection. Section 4 summarizes
our simulation studies for a large combination of
linear and nonlinear characteristics of the Hammer-
stein system. In Section 5 we summarize our re-
sults, whereas in Section 6 further extensions are
discussed.

3 Data-Driven Bandwidth Selec-
tors

A natural modification of the naive estimate in (13)
is the classical leave-one-out selector, i.e., a data-
driven h is found by minimizing the following cri-
terion

CV (h) = n−1
n

∑
i=1

[Yi − m̂h,−i(Ui)]
2, (15)

where

m̂h,−i(u) =
∑n

j=1, j ̸=iYjKh(u−Uj)

∑n
j=1, j ̸=i Kh(u−Uj)

. (16)

Note that m̂h,−i(u) is the leave-one-out version of
the estimator m̂h(u) in (6) where the i-th observation
pair (Ui,Yi) is omitted. The criterion CV (h) is based
on the partition principle that data used for forming
the estimate m̂h,−i(u) and those used for averaging
should be separated as much as possible. The leave-
one-out criterion is universal but is not taking into
account the fact that we are dealing with dependent
data. We will use CV (h) as the reference selec-
tor with which we will compare other data-driven
methods studied in this paper. This includes, modi-
fied, partitioned and corrected cross-validation pro-
cedures.

3.1 Modified Cross-Validation

The selector relying on CV (h) is efficient if Yi and
m̂h,−i(Ui) are statistically independent. This takes
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place if the noise process {εi} is white. This clearly
is not the case in the context of the Hammerstein
system.
In order to include the dependence structure of the
observed data let us define the so-called the Mod-
ified Cross-Validation (MCV) criterion. Hence, let
us define the following selection criterion

MCV (h) = n−1
n

∑
i=1

[Yi − m̂MCV (Ui; l)]2, (17)

where

m̂MCV (Ui; l) =
∑n

j=1:| j−i|>l YjKh(Ui −Uj)

∑n
j=1:| j−i|>l Kh(Ui −Uj)

. (18)

Note that in the formation of m̂MCV (Ui; l), only data
points that are the l units apart from the observa-
tion pair (Ui,Yi) are taken into account. Hence,
m̂MCV (u; l) is the leave-(2l+1)-out version of the
kernel estimator. The value of the parameter l is
directly related to the memory size of the linear dy-
namical subsystem. For instance, if it is known that
the linear part in (1) is of order p, i.e.,

Wt =
p

∑
i=0

λiVt−i (19)

then we should choose l = p + 1. In other more
general cases one should try a several integer val-
ues of l. The range of l is not large since for a
wide class of stable linear subsystems the impulse
response {λi} decays exponentially fast to zero, i.e.,
physical systems reveal short memory. Note that
l = 0 corresponds to the classical leave-one-out cri-
terion in (15). We refer to [29] for a discussion of
the MCV criterion in the context of the standard re-
gression analysis.

3.2 Partitioned Cross-Validation

Yet another data-driven procedure of the bandwidth
choice in the presence of correlated errors is the Par-
titioned Cross-Validation (PCV) method originally
introduced in [28, 29]. Here, for any g ≥ 1, one
splits the data set into disjoint g subgroups such that
observations in the given group are apart from each
other by the distance g. Hence, the training set Tn in
(2) is divided into subsets {Tn,k,k= 1, . . . ,g}, where

Tn,k = {(U(i−1)g+k,Y(i−1)g+k), i = 1, . . . ,n/g}

is the k-th training data subgroup of the size n/g.
Here, without loss of generality, we assume that

n/g is an integer value. Next within each subsam-
ple Tn,k the leave-one-out criterion defined in (15)
is used. Let us denote the CV (h) criterion applied
to the k-th subgroup as CVk(h). Consequently, the
PCV selection rule is defined as follows

PCV (h) = g−1
g

∑
k=1

CVk(h). (20)

Let ĥ′PCV be the bandwidth that minimizes (20). It is
important to note that ĥ′PCV is the bandwidth corre-
sponding to the reduced sample size n/g. Since the
optimal bandwidth should be of the form Cn−1/5,
see (9), then one should correct ĥ′PCV to adapt to the
original data size n. Hence, the final PCV band-
width choice is

ĥPCV = g−1/5ĥ′PCV , (21)

where ĥ′PCV is the minimizer of (20). The parameter
g should be obtained by some priori knowledge of
the dynamical linear subsystem memory size. For
the finite memory subsystem in (19) one should
specify g = p+1. This makes the data within each
subgroup Tn,k independent improving greatly the
accuracy of the selected bandwidth ĥPCV . Note fi-
nally that for g = 1 the PCV selector is equivalent
to the ordinary leave-one-out criterion.

3.3 Corrected Cross-Validation

In [30] a class of the so-called corrected cross-
validation methods has been developed. These
techniques rely on certain transformations of the
standard CV (h) criterion in (15) and the estimated
noise residuals in order to compensate the correla-
tion present in the data set. The common character-
istic of the corrected cross-validation techniques is
that they explicitly employ the correlation structure
of the observed data. Let us first recall, see (11),
that the Hammerstein system can be written as

Yt = m(Ut)+ εt , (22)

with εt = ∑∞
i=1 λim(Ut−i)+Zt . The dependent noise

εt has the following covariance structure

Cov[εt ,εt+l] = E[m2(U)]
∞

∑
j=1

λ jλ j+l (23)

for l ̸= 0 and Var[εt ] = E[m2(U)]∑∞
j=1 λ2

j +σ2
Z . Let

us denote Cov[εt ,εt+l] as ρ(l). Note that ρ(l) is the
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correlation of the residual noise εt in (22). In order
to estimate ρ(l) we may use the estimated residuals

ε̂i = Yi − m̂h(Ui), (24)

for i = 1, . . . ,n, where m̂h(u) is defined in (6). In
fact,

ρ̂n(l) =
1

n− l

n−l

∑
i=1

ε̂iε̂i+l (25)

may serve as a consistent estimate of ρ(l). This al-
lows us to define the first corrected cross-validation
criterion named in [30] as the direct method

DCV (h) =
n

∑
i=1

ε̂2
i

(1−∑n
j=1Wh, j(Ui)ρ̂n(| j− i|))2 .

(26)
Here

Wh, j(u) =
Kh(u−Uj)

∑n
i=1 Kh(u−Ui)

,

for j = 1, . . . ,n are the weights corresponding to the
kernel GRNN estimate in (6).
The method related to the direct corrected cross-
validation criterion in (26) is the cross-validation
technique based on the generalized cross-validation
(GCV) procedure. Here, the selection criterion
takes the following form

GDCV (h) =
n

∑
i=1

ε̂2
i

(1−n−1tr(WnRn))2 , (27)

where Wn is the n×n matrix with the (i, j)-th com-
ponent being Wh, j(Ui), whereas Rn is the n×n ma-
trix with the (i, j)-th component equal to ρ̂n(| j− i|).
In [30] yet another class of bandwidth selection
techniques has been proposed referred to as the in-
direct corrected cross-validation method. Here, one
is transforming the residual process {ε̂i} in (24)
rather than the CV (h) criterion as it was done in
the direct method. The indirect corrected cross-
validation criterion reads as

ICV (h) =
n

∑
i=1

ε̂′
2
i

(1−Wh,i(Ui))2 , (28)

where {ε̂′i} are the transformed residuals being the
components of R−1/2

n (ε̂1, · · · , ε̂n)
T . The latter is

the empirical counterpart of the classical whitening
transformation.
The counterpart of the GCV criterion, see (27), in
the indirect strategy context is the following selec-
tion criterion

GICV (h) =
n

∑
i=1

ε̂′
2
i

(1−n−1 ∑n
j=1Wh, j(Ui))2 . (29)

4 Simulation Studies

In this section we evaluate the accuracy of the afore-
mentioned bandwidth selection methods in the con-
text of identification of the Hammerstein system.
This is done for various choices of the linear and
nonlinear characteristics of the system.
Throughout our studies we assume that the input
signals {Ui} is the white Gaussian process with zero
mean and unit variance. The following types of
nonlinear characteristics appearing in the the Ham-
merstein system, see Figure 1, are taken into ac-
count

– (N1) Polynomial: m(u) = 0.5976(u3 +u).

– (N2) Deadzone: m(u) = 1.2866((u−0.2)1(u ≥
0.2)+(u+0.2)1(u ≤−0.2)).

– (N3) ArcTan: m(u) = 1.0808arctan(2u).

– (N4) ArcTan: m(u) = 0.6995arctan(20u).

– (N5) Piecewise Constant: m(u) = 1.1599[0.75 ·
1(0.2 ≤ u ≤ 0.5)+1(u > 0.5)−0.75 ·1(−0.5 ≤
u ≤−0.2)−1(u ≤−0.5)],

where 1(A) is an indicator function, i.e., 1(A) = 1 if
u ∈ A and 1(A) = 0 otherwise.

The above nonlinearities reveal various degrees
of smoothness and variability. Hence, the nonlin-
earity N5 has jump discontinuities, the nonlineari-
ties N3 and N4 are continuous with the rapid change
at u = 0. The characteristic N2 is piecewise linear,
whereas N1 is the polynomial nonlinearity. Note
that N1 is the most commonly used nonlinearity in
applications. It should be noted that all nonlineari-
ties are normalized, i.e., we have E[m(U)] = 0 and
E[m2(U)] = 1. The examined nonlinearities are de-
picted in Figure 2.
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Figure 2. Nonlinear characteristics used in
simulation studies.

Regarding the liner dynamical part of the Hammer-
stein system we will employ the following models

– (L1) AR(1): Wt = ρWt−1 +Vt with ρ =−0.8.

– (L2) AR(1): Wt = ρWt−1 +Vt with ρ =−0.3.

– (L3) AR(1): Wt = ρWt−1 +Vt with ρ = 0.

– (L4) AR(1): Wt = ρWt−1 +Vt with ρ = 0.3.

– (L5) AR(1): Wt = ρWt−1 +Vt with ρ = 0.8.

– (L6) The 3rd-order low-pass Butterworth filter
with cut-off frequency 0.5π rad/sample.
This filter has the following transfer function.

H(z) =
0.25+0.75z−1 +0.75z−2 +0.25z−3

1+0.3333z−2 .

– (L7) The 3rd-order high-pass Butterworth filter
with cut-off frequency 0.6π rad/sample. This
filter is characterized by the following transfer
function.

H(z) =
L(z)
M(z)

,

where L(z) = −0.388+ 1.164z−1 − 1.164z−2 +
0.388z−3 and M(z) = 1 + 0.5772z−1 +
0.4218z−2 +0.0563z−3.

We should note that the case L3 corresponds to the
memoryless version of the Hammerstein system.
The characteristics L1-L5 define the autoregressive
linear models (AR) of order 1. Furthermore, all lin-
ear characteristics were normalized such that λ0 = 1
in the convolution representation.

We will consider the Hammerstein system with all
possible combinations of the aforementioned non-
linear/linear subsystems characteristics. For the
purpose of making each experiment comparable,
we set the noise {Zi} to be the iid Gaussian. Also
to control the signal-to-noise ratio (SNR) we set
E[Z2]
E[W 2]

= 0.01, which corresponds to the 20 dB SNR.

The data set Tn = {(U1,Y1), . . . ,(Un,Yn)} of the size
n = 200 is used from which the kernel GRNN esti-
mate in (6) is formed. The quadratic kernel function
K(u) = 15

16(1−u2)21(|u|< 1) has been employed.

The following data-driven bandwidth selection
methods were chosen in our experimental studies.

– (M1) Leave-one-out CV.

– (M2) MCV (l) with different values of l.

– (M3) PCV (g) with different values of g.

– (M4) GDCV.

– (M5) GICV.

We denote the bandwidth selected by these methods
by hCV , hMCV (l), hPCV (g), hGDCV and hGICV , respec-
tively.

The criterion chosen for measuring the accu-
racy of the given bandwidth selector is the MISE(h)
measure defined in (10). Note that MISE(h) in-
volves the averaging with respect the future test data
as well as the averaging with respect to all possible
training sets of the size n. To emphasize the lat-
ter dependence let us write m̂h(u;Tn) for the kernel
GRNN estimate determined from the training data
Tn and tuned by the bandwidth h. In our simula-
tion experiments we generate the (independent of
the training set Tn) test set

{(UT
1 ,Y

T
1 ), · · · ,(UT

N ,Y
T
N )},

where N is very large integer being set to N = 2000
in our experiments. Next we generate a collection
of training sets {T [s]

n ,s = 1, . . . ,L} of the same size
n. In our experiments we set L = 500 and n = 200.
These simulated test and training data sets allow us
to experimentally evaluate the MISE(h) in (10) as
follows

MISE(h) =
1

NL

N

∑
i=1

L

∑
s=1

(
m(UT

i )− m̂h(UT
i ;T [s]

n )
)2

,

(30)

Jiaqing Lv, Mirosław Pawlak

correlation of the residual noise εt in (22). In order
to estimate ρ(l) we may use the estimated residuals

ε̂i = Yi − m̂h(Ui), (24)

for i = 1, . . . ,n, where m̂h(u) is defined in (6). In
fact,

ρ̂n(l) =
1

n− l

n−l

∑
i=1

ε̂iε̂i+l (25)

may serve as a consistent estimate of ρ(l). This al-
lows us to define the first corrected cross-validation
criterion named in [30] as the direct method

DCV (h) =
n

∑
i=1

ε̂2
i

(1−∑n
j=1Wh, j(Ui)ρ̂n(| j− i|))2 .

(26)
Here

Wh, j(u) =
Kh(u−Uj)

∑n
i=1 Kh(u−Ui)

,

for j = 1, . . . ,n are the weights corresponding to the
kernel GRNN estimate in (6).
The method related to the direct corrected cross-
validation criterion in (26) is the cross-validation
technique based on the generalized cross-validation
(GCV) procedure. Here, the selection criterion
takes the following form

GDCV (h) =
n

∑
i=1

ε̂2
i

(1−n−1tr(WnRn))2 , (27)

where Wn is the n×n matrix with the (i, j)-th com-
ponent being Wh, j(Ui), whereas Rn is the n×n ma-
trix with the (i, j)-th component equal to ρ̂n(| j− i|).
In [30] yet another class of bandwidth selection
techniques has been proposed referred to as the in-
direct corrected cross-validation method. Here, one
is transforming the residual process {ε̂i} in (24)
rather than the CV (h) criterion as it was done in
the direct method. The indirect corrected cross-
validation criterion reads as

ICV (h) =
n

∑
i=1

ε̂′
2
i

(1−Wh,i(Ui))2 , (28)

where {ε̂′i} are the transformed residuals being the
components of R−1/2

n (ε̂1, · · · , ε̂n)
T . The latter is

the empirical counterpart of the classical whitening
transformation.
The counterpart of the GCV criterion, see (27), in
the indirect strategy context is the following selec-
tion criterion

GICV (h) =
n

∑
i=1

ε̂′
2
i

(1−n−1 ∑n
j=1Wh, j(Ui))2 . (29)

4 Simulation Studies

In this section we evaluate the accuracy of the afore-
mentioned bandwidth selection methods in the con-
text of identification of the Hammerstein system.
This is done for various choices of the linear and
nonlinear characteristics of the system.
Throughout our studies we assume that the input
signals {Ui} is the white Gaussian process with zero
mean and unit variance. The following types of
nonlinear characteristics appearing in the the Ham-
merstein system, see Figure 1, are taken into ac-
count

– (N1) Polynomial: m(u) = 0.5976(u3 +u).

– (N2) Deadzone: m(u) = 1.2866((u−0.2)1(u ≥
0.2)+(u+0.2)1(u ≤−0.2)).

– (N3) ArcTan: m(u) = 1.0808arctan(2u).

– (N4) ArcTan: m(u) = 0.6995arctan(20u).

– (N5) Piecewise Constant: m(u) = 1.1599[0.75 ·
1(0.2 ≤ u ≤ 0.5)+1(u > 0.5)−0.75 ·1(−0.5 ≤
u ≤−0.2)−1(u ≤−0.5)],

where 1(A) is an indicator function, i.e., 1(A) = 1 if
u ∈ A and 1(A) = 0 otherwise.

The above nonlinearities reveal various degrees
of smoothness and variability. Hence, the nonlin-
earity N5 has jump discontinuities, the nonlineari-
ties N3 and N4 are continuous with the rapid change
at u = 0. The characteristic N2 is piecewise linear,
whereas N1 is the polynomial nonlinearity. Note
that N1 is the most commonly used nonlinearity in
applications. It should be noted that all nonlineari-
ties are normalized, i.e., we have E[m(U)] = 0 and
E[m2(U)] = 1. The examined nonlinearities are de-
picted in Figure 2.
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where we some abuse of notation we use the sym-
bol MISE(h) for the simulation based version of the
true MISE(h) in (10).

Let us denote the ideal bandwidth value that
minimizes the approximated MISE(h) criterion in
(30) by h∗. Also let ĥ refers to the one of the pro-
posed methods for the data-driven bandwidth selec-
tion, i.e., hCV , hMCV (l), hPCV (g), hGDCV and hGICV .
In our first simulation experiment we determine the
values of ĥ, h∗ and the corresponding estimation er-
rors, i.e., MISE(ĥ), MISE(h∗). This is done for the
aforementioned combinations of the nonlinear and
linear characteristics of the Hammerstein system.
In the case of the methods MCV (l) and PCV (g) we
use several choices for l and g ranging from small
to large values.

Tables 1-5 show the optimal bandwidth h∗ and
the bandwidth specified by the examined methods,
i.e., hCV , hMCV (l), hPCV (g), hGDCV and hGICV . The
corresponding values of MISE(h) are also shown
in the square brackets.

We observe that the PCV (g) method can greatly
decrease the estimation error. In most cases, the
MCV (l) technique can also increase the estima-
tion accuracy but not as much as the PCV (g) algo-
rithm. This is not the case for the GDCV and GICV
methods that perform even worse than the classical
leave-one-out CV.

To get the further qualitative insight into the ac-
curacy of the examined data-driven bandwidth se-
lectors let

∆(h,h∗) = MISE(h)−MISE(h∗)

be the distance between some h and h∗ being the
minimizer of MISE(h) in (30). Clearly, ∆(h,h∗) ≥
0. Then, we define the following relative accuracy
index for the bandwidth selector ĥ

S(ĥ) =
∆(hCV ,h∗)−∆(ĥ,h∗)

∆(hCV ,h∗)
, (31)

where hCV is the classical leave-one-out bandwidth
minimizing (15). Hence, the index S(ĥ) defines the
relative accuracy measure of ĥ with respect to to
hCV . Clearly, S(hCV ) = 0, and the large value of
S(ĥ) indicates that the selector ĥ outperforms the
classical CV method. Furthermore, if S(ĥ)< 0 then
the selector ĥ works worst than the universal CV
method.

In Figures 3-7 the S-values for the MCV (l) and
PCV (g) techniques are depicted for various com-
binations of the nonlinear and linear characteristics
of the Hammerstein system. Specifically, PCV (g)
for g = 2,5,10,15 are displayed. In Figure 6, how-
ever, only the case g = 2 is shown. The reason is
that other values of g do not lead to useful results as
it can be drawn from Table 4. Also we do not show
the S-value for the GDCV or GICV methods be-
cause they perform poorly as it can be learned from
Tables 1-5.

Figure 3. The index S values for the MCV (l) and
PCV (g) methods versus l and g. The Hammerstein

system with the N1-nonlinearity and linear
subsystems L1-L7.

Figure 4. The index S values for the MCV (l) and
PCV (g) methods versus l and g. The Hammerstein

system with the N2-nonlinearity and linear
subsystems L1-L7.
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Table 1. The Hammerstein system with the N1-nonlinearity and various linear subsystems. The average
value of ĥ (×10−1) and the corresponding MISE(ĥ) (×10−1).

L1 L2 L3 L4 L5 L6 L7
Optimal 10.5[1.15] 9.5[0.90] 9.5[0.89] 10.0[1.03] 11.0[2.12] 10.0[1.10] 10.5[1.11]

leave-1-out CV 8.5[1.38] 6.1[1.15] 5.6[1.23] 6.2[1.52] 8.7[2.40] 7.2[1.45] 10.1[1.47]
MCV (l=2) 8.6[1.37] 6.2[1.15] 5.6[1.23] 6.2[1.53] 8.5[2.41] 7.2[1.45] 10.3[1.40]
MCV (l=5) 8.7[1.37] 6.3[1.15] 5.7[1.22] 6.2[1.52] 8.5[2.42] 7.3[1.44] 10.3[1.44]
MCV (l=10) 8.7[1.37] 6.4[1.14] 5.8[1.20] 6.3[1.51] 8.4[2.44] 7.3[1.43] 10.2[1.46]
MCV (l=15) 8.8[1.37] 6.4[1.13] 5.9[1.20] 6.4[1.49] 8.5[2.42] 7.4[1.42] 10.4[1.42]
PCV (g=2) 9.1[1.31] 6.9[1.07] 6.6[1.09] 6.9[1.41] 9.1[2.33] 7.7[1.37] 10.9[1.36]
PCV (g=5) 9.9[1.24] 7.8[1.01] 7.5[1.01] 7.9[1.27] 9.9[2.25] 8.4[1.29] 11.8[1.29]
PCV (g=10) 10.7[1.22] 8.2[0.97] 8.0[0.96] 8.3[1.19] 10.7[2.23] 9.0[1.23] 12.6[1.29]
PCV (g=15) 11.2[1.22] 8.4[0.95] 8.2[0.94] 8.6[1.17] 11.1[2.21] 9.3[1.21] 13.3[1.32]

GDCV 8.2[1.45] 4.2[1.34] 2.1[1.91] 4.2[1.81] 8.1[2.54] 6.1[1.59] 10.2[1.91]
GICV 8.7[1.55] 4.2[1.36] 2.2[1.91] 4.2[1.81] 9.0[2.52] 6.2[1.61] 10.0[2.06]

Table 2. The Hammerstein system with the N2-nonlinearity and various linear subsystems. The average
value of ĥ (×10−1) and the corresponding MISE(ĥ) (×10−1).

L1 L2 L3 L4 L5 L6 L7
Optimal 9.5[0.62] 7.5[0.28] 7.0[0.26] 7.0[0.26] 8.5[1.45] 7.5[0.33] 10.5[0.99]

leave-1-out CV 8.6[0.80] 5.9[0.42] 5.3[0.47] 5.9[0.39] 8.7[1.61] 7.1[0.43] 10.0[1.37]
MCV (l=2) 8.6[0.80] 5.9[0.42] 5.3[0.47] 5.9[0.40] 8.5[1.61] 7.0[0.43] 10.2[1.33]
MCV (l=5) 8.6[0.80] 6.0[0.42] 5.4[0.47] 6.0[0.40] 8.4[1.62] 7.1[0.43] 10.3[1.31]

MCV (l=10) 8.8[0.78] 6.1[0.42] 5.5[0.46] 6.1[0.40] 8.4[1.62] 7.2[0.43] 10.4[1.30]
MCV (l=15) 8.9[0.78] 6.2[0.41] 5.5[0.45] 6.2[0.39] 8.5[1.62] 7.4[0.42] 10.5[1.29]
PCV (g=2) 8.9[0.75] 6.5[0.39] 6.1[0.40] 6.6[0.38] 9.1[1.56] 7.4[0.41] 10.8[1.22]
PCV (g=5) 9.5[0.71] 7.1[0.35] 6.9[0.34] 7.2[0.33] 9.6[1.54] 7.9[0.38] 11.5[1.18]
PCV (g=10) 10.1[0.69] 7.5[0.32] 7.2[0.30] 7.5[0.31] 10.2[1.55] 8.2[0.38] 12.4[1.16]
PCV (g=15) 10.6[0.70] 7.8[0.31] 7.5[0.29] 7.8[0.31] 10.8[1.58] 8.6[0.38] 13.0[1.19]

GDCV 8.3[0.81] 4.0[0.50] 2.1[0.84] 4.1[0.47] 8.0[1.66] 6.0[0.46] 10.4[1.41]
GICV 8.8[0.87] 4.0[0.51] 2.1[0.84] 4.2[0.48] 9.1[1.70] 6.0[0.46] 10.1[1.53]

Table 3. The Hammerstein system with the N3-nonlinearity and various linear subsystems. The average
value of ĥ (×10−1) and the corresponding MISE(ĥ) (×10−1).

L1 L2 L3 L4 L5 L6 L7
Optimal 9.0[0.49] 6.0[0.12] 5.5[0.07] 6.0[0.11] 8.5[1.32] 7.0[0.27] 11.5[0.93]

leave-1-out CV 8.3[0.70] 5.3[0.14] 4.5[0.12] 5.5[0.13] 8.3[1.46] 6.7[0.32] 10.1[1.38]
MCV (l=2) 8.3[0.71] 5.4[0.14] 4.5[0.11] 5.4[0.14] 8.2[1.45] 6.6[0.32] 10.3[1.38]
MCV (l=5) 8.4[0.71] 5.4[0.14] 4.6[0.11] 5.4[0.14] 8.1[1.47] 6.7[0.32] 10.4[1.36]
MCV (l=10) 8.5[0.69] 5.5[0.14] 4.7[0.11] 5.5[0.14] 7.9[1.49] 6.7[0.32] 10.4[1.38]
MCV (l=15) 8.7[0.68] 5.6[0.14] 4.7[0.11] 5.6[0.14] 7.9[1.48] 6.8[0.32] 10.6[1.35]
PCV (g=2) 8.6[0.64] 5.5[0.14] 5.0[0.10] 5.7[0.13] 8.7[1.41] 6.9[0.31] 10.6[1.26]
PCV (g=5) 8.9[0.57] 5.8[0.13] 5.5[0.08] 5.9[0.13] 8.7[1.39] 6.9[0.29] 11.1[1.14]

PCV (g=10) 9.1[0.54] 6.0[0.13] 5.7[0.08] 6.1[0.12] 9.0[1.38] 7.0[0.29] 11.6[1.08]
PCV (g=15) 9.4[0.54] 6.2[0.13] 6.0[0.08] 6.2[0.12] 9.4[1.37] 7.3[0.29] 12.0[1.11]

GDCV 8.5[0.65] 4.5[0.15] 2.5[0.19] 4.5[0.15] 8.3[1.43] 6.5[0.31] 10.8[1.27]
GICV 9.0[0.73] 4.5[0.15] 2.6[0.18] 4.5[0.15] 9.1[1.49] 6.5[0.32] 10.4[1.34]
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where we some abuse of notation we use the sym-
bol MISE(h) for the simulation based version of the
true MISE(h) in (10).

Let us denote the ideal bandwidth value that
minimizes the approximated MISE(h) criterion in
(30) by h∗. Also let ĥ refers to the one of the pro-
posed methods for the data-driven bandwidth selec-
tion, i.e., hCV , hMCV (l), hPCV (g), hGDCV and hGICV .
In our first simulation experiment we determine the
values of ĥ, h∗ and the corresponding estimation er-
rors, i.e., MISE(ĥ), MISE(h∗). This is done for the
aforementioned combinations of the nonlinear and
linear characteristics of the Hammerstein system.
In the case of the methods MCV (l) and PCV (g) we
use several choices for l and g ranging from small
to large values.

Tables 1-5 show the optimal bandwidth h∗ and
the bandwidth specified by the examined methods,
i.e., hCV , hMCV (l), hPCV (g), hGDCV and hGICV . The
corresponding values of MISE(h) are also shown
in the square brackets.

We observe that the PCV (g) method can greatly
decrease the estimation error. In most cases, the
MCV (l) technique can also increase the estima-
tion accuracy but not as much as the PCV (g) algo-
rithm. This is not the case for the GDCV and GICV
methods that perform even worse than the classical
leave-one-out CV.

To get the further qualitative insight into the ac-
curacy of the examined data-driven bandwidth se-
lectors let

∆(h,h∗) = MISE(h)−MISE(h∗)

be the distance between some h and h∗ being the
minimizer of MISE(h) in (30). Clearly, ∆(h,h∗) ≥
0. Then, we define the following relative accuracy
index for the bandwidth selector ĥ

S(ĥ) =
∆(hCV ,h∗)−∆(ĥ,h∗)

∆(hCV ,h∗)
, (31)

where hCV is the classical leave-one-out bandwidth
minimizing (15). Hence, the index S(ĥ) defines the
relative accuracy measure of ĥ with respect to to
hCV . Clearly, S(hCV ) = 0, and the large value of
S(ĥ) indicates that the selector ĥ outperforms the
classical CV method. Furthermore, if S(ĥ)< 0 then
the selector ĥ works worst than the universal CV
method.

In Figures 3-7 the S-values for the MCV (l) and
PCV (g) techniques are depicted for various com-
binations of the nonlinear and linear characteristics
of the Hammerstein system. Specifically, PCV (g)
for g = 2,5,10,15 are displayed. In Figure 6, how-
ever, only the case g = 2 is shown. The reason is
that other values of g do not lead to useful results as
it can be drawn from Table 4. Also we do not show
the S-value for the GDCV or GICV methods be-
cause they perform poorly as it can be learned from
Tables 1-5.

Figure 3. The index S values for the MCV (l) and
PCV (g) methods versus l and g. The Hammerstein

system with the N1-nonlinearity and linear
subsystems L1-L7.

Figure 4. The index S values for the MCV (l) and
PCV (g) methods versus l and g. The Hammerstein

system with the N2-nonlinearity and linear
subsystems L1-L7.
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Table 4. The Hammerstein system with the N4-nonlinearity and various linear subsystems. The average
value of ĥ (×10−1) and the corresponding MISE(ĥ) (×10−1).

L1 L2 L3 L4 L5 L6 L7
Optimal 6.0[1.02] 2.5[0.25] 2.5[0.17] 2.5[0.23] 5.5[1.72] 4.0[0.48] 8.5[1.61]

leave-1-out CV 5.9[1.22] 2.7[0.27] 2.2[0.19] 2.7[0.25] 5.8[1.89] 3.9[0.54] 8.1[2.09]
MCV (l=2) 6.0[1.24] 2.7[0.27] 2.2[0.19] 2.7[0.25] 5.7[1.90] 3.9[0.54] 8.2[2.07]
MCV (l=5) 6.1[1.23] 2.7[0.27] 2.2[0.19] 2.7[0.25] 5.7[1.90] 3.9[0.54] 8.3[2.07]
MCV (l=10) 6.2[1.21] 2.8[0.27] 2.2[0.19] 2.7[0.25] 5.7[1.90] 4.0[0.54] 8.4[2.08]
MCV (l=15) 6.4[1.19] 2.8[0.27] 2.3[0.19] 2.8[0.25] 5.7[1.91] 4.0[0.54] 8.6[2.10]
PCV (g=2) 6.5[1.20] 3.0[0.27] 2.5[0.19] 2.9[0.25] 6.3[1.86] 4.2[0.54] 8.9[2.04]
PCV (g=5) 7.4[1.22] 3.5[0.28] 3.0[0.20] 3.5[0.26] 7.2[1.87] 4.9[0.55] 10.3[1.90]

PCV (g=10) 8.0[1.19] 4.0[0.31] 3.6[0.22] 4.0[0.29] 8.0[1.91] 5.3[0.57] 11.3[1.93]
PCV (g=15) 8.8[1.26] 4.4[0.33] 4.1[0.26] 4.5[0.32] 8.5[1.97] 5.8[0.61] 11.6[2.13]

GDCV 6.1[1.17] 2.1[0.28] 1.1[0.28] 2.2[0.26] 5.9[1.89] 3.7[0.54] 8.6[1.98]
GICV 6.2[1.23] 2.1[0.28] 1.1[0.28] 2.2[0.25] 6.3[1.91] 3.7[0.54] 8.5[2.04]

Table 5. The Hammerstein system with the N5-nonlinearity and various linear subsystems. The average
value of ĥ (×10−1) and the corresponding MISE(ĥ) (×10−1).

L1 L2 L3 L4 L5 L6 L7
Optimal 7.5[0.78] 5.0[0.35] 2.0[0.29] 5.5[0.34] 7.5[1.64] 6.0[0.49] 10.0[1.30]

leave-1-out CV 7.6[0.94] 3.6[0.38] 2.7[0.32] 3.7[0.37] 7.7[1.82] 5.7[0.54] 9.4[1.74]
MCV (l=2) 7.6[0.94] 3.7[0.38] 2.7[0.32] 3.7[0.37] 7.4[1.83] 5.6[0.55] 9.5[1.75]
MCV (l=5) 7.7[0.93] 3.7[0.37] 2.8[0.32] 3.7[0.37] 7.3[1.83] 5.7[0.55] 9.5[1.78]
MCV (l=10) 7.8[0.93] 3.9[0.37] 2.9[0.32] 3.9[0.37] 7.3[1.83] 5.7[0.54] 9.6[1.77]
MCV (l=15) 7.9[0.93] 4.0[0.37] 3.0[0.32] 4.0[0.37] 7.3[1.83] 5.8[0.55] 9.8[1.74]
PCV (g=2) 7.7[0.90] 4.5[0.36] 3.8[0.31] 4.5[0.36] 7.8[1.76] 6.0[0.53] 9.9[1.66]
PCV (g=5) 8.1[0.86] 5.0[0.36] 4.5[0.32] 4.9[0.35] 8.3[1.74] 6.1[0.51] 10.9[1.52]

PCV (g=10) 8.5[0.86] 5.1[0.36] 4.7[0.32] 5.1[0.35] 8.6[1.74] 6.3[0.51] 11.3[1.53]
PCV (g=15) 8.6[0.88] 5.3[0.36] 5.0[0.32] 5.3[0.35] 8.9[1.76] 6.4[0.52] 11.9[1.61]

GDCV 7.8[0.88] 2.4[0.41] 0.7[0.62] 2.5[0.42] 7.6[1.80] 5.4[0.55] 9.9[1.65]
GICV 8.4[0.97] 2.4[0.42] 0.7[0.62] 2.5[0.41] 8.0[1.88] 5.5[0.55] 9.8[1.71]
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Figure 5. The index S values for the MCV (l) and
PCV (g) methods versus l and g. The Hammerstein

system with the N3-nonlinearity and linear
subsystems L1-L7.

Figure 6. The index S values for the MCV (l) and
PCV (g) methods versus l and g. The Hammerstein

system with the N4-nonlinearity and linear
subsystems L1-L7.

5 Discussion and Conclusions

Based on the simulations presented in Section 3, we
can conclude that the PCV (g) bandwidth selection
method leads to the considerably smaller estimation
error (MISE) comparing to the leave-one-out CV in
the most examined cases. We have shown that for
the Hammerstein system with the N1, N2, N3, N5
input nonlinearities, the optimal choice of g is of
order g = 10 or g = 15. The corresponding S-value
is commonly close to 0.8 indicating the degree of
the improvement of the PCV (g) choice over the CV

selection. Furthermore, the PCV (g) method often
leads to the estimation error being near to the opti-
mal value MISE(h∗).

Figure 7. The index S values for the MCV (l) and
PCV (g) methods versus l and g. The Hammerstein

system with the N5-nonlinearity and linear
subsystems L1-L7.

The fact that g = 10 (or g = 15) reveals the need
of taking into account the correlation structure of
the residual noise {εt} appearing in the Hammer-
stein system as it is defined in (22). The special case
is the nonlinearity N4, where the value g = 2 leads
to the smallest estimation error. This takes place
since the nonlinearity N4 varies quickly around the
point u = 0, where the input density has the maxi-
mum value. As a result, splitting the data set into
too many subgroups will make it more difficult to
estimate the nonlinearity at points being far from
u = 0. Nevertheless, the PCV (g) method with g = 2
improves the estimation accuracy for the most lin-
ear subsystems connected with the N4 nonlinearity.
Finally, note that for the combinations (L4, N4) and
(L6, N4) the PCV (g) method works comparable to
the leave-one-out CV method.

Concerning the nonlinearity N5 being the piece-
wise constant function, the PCV (g) method per-
forms also very well. This is due to the fact that
the jump points are not so significant as the rapid
change in the nonlinearity N4 yielding the possibil-
ity to utilize all data points within the estimation
interval.

The accuracy of the PCV (g) algorithm depends
on the choice of g. This can be selected in practice
by using first the pilot kernel GRNN estimate where
the bandwidth is specified by the leave-one-out CV
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Table 4. The Hammerstein system with the N4-nonlinearity and various linear subsystems. The average
value of ĥ (×10−1) and the corresponding MISE(ĥ) (×10−1).

L1 L2 L3 L4 L5 L6 L7
Optimal 6.0[1.02] 2.5[0.25] 2.5[0.17] 2.5[0.23] 5.5[1.72] 4.0[0.48] 8.5[1.61]

leave-1-out CV 5.9[1.22] 2.7[0.27] 2.2[0.19] 2.7[0.25] 5.8[1.89] 3.9[0.54] 8.1[2.09]
MCV (l=2) 6.0[1.24] 2.7[0.27] 2.2[0.19] 2.7[0.25] 5.7[1.90] 3.9[0.54] 8.2[2.07]
MCV (l=5) 6.1[1.23] 2.7[0.27] 2.2[0.19] 2.7[0.25] 5.7[1.90] 3.9[0.54] 8.3[2.07]

MCV (l=10) 6.2[1.21] 2.8[0.27] 2.2[0.19] 2.7[0.25] 5.7[1.90] 4.0[0.54] 8.4[2.08]
MCV (l=15) 6.4[1.19] 2.8[0.27] 2.3[0.19] 2.8[0.25] 5.7[1.91] 4.0[0.54] 8.6[2.10]
PCV (g=2) 6.5[1.20] 3.0[0.27] 2.5[0.19] 2.9[0.25] 6.3[1.86] 4.2[0.54] 8.9[2.04]
PCV (g=5) 7.4[1.22] 3.5[0.28] 3.0[0.20] 3.5[0.26] 7.2[1.87] 4.9[0.55] 10.3[1.90]

PCV (g=10) 8.0[1.19] 4.0[0.31] 3.6[0.22] 4.0[0.29] 8.0[1.91] 5.3[0.57] 11.3[1.93]
PCV (g=15) 8.8[1.26] 4.4[0.33] 4.1[0.26] 4.5[0.32] 8.5[1.97] 5.8[0.61] 11.6[2.13]

GDCV 6.1[1.17] 2.1[0.28] 1.1[0.28] 2.2[0.26] 5.9[1.89] 3.7[0.54] 8.6[1.98]
GICV 6.2[1.23] 2.1[0.28] 1.1[0.28] 2.2[0.25] 6.3[1.91] 3.7[0.54] 8.5[2.04]

Table 5. The Hammerstein system with the N5-nonlinearity and various linear subsystems. The average
value of ĥ (×10−1) and the corresponding MISE(ĥ) (×10−1).

L1 L2 L3 L4 L5 L6 L7
Optimal 7.5[0.78] 5.0[0.35] 2.0[0.29] 5.5[0.34] 7.5[1.64] 6.0[0.49] 10.0[1.30]

leave-1-out CV 7.6[0.94] 3.6[0.38] 2.7[0.32] 3.7[0.37] 7.7[1.82] 5.7[0.54] 9.4[1.74]
MCV (l=2) 7.6[0.94] 3.7[0.38] 2.7[0.32] 3.7[0.37] 7.4[1.83] 5.6[0.55] 9.5[1.75]
MCV (l=5) 7.7[0.93] 3.7[0.37] 2.8[0.32] 3.7[0.37] 7.3[1.83] 5.7[0.55] 9.5[1.78]

MCV (l=10) 7.8[0.93] 3.9[0.37] 2.9[0.32] 3.9[0.37] 7.3[1.83] 5.7[0.54] 9.6[1.77]
MCV (l=15) 7.9[0.93] 4.0[0.37] 3.0[0.32] 4.0[0.37] 7.3[1.83] 5.8[0.55] 9.8[1.74]
PCV (g=2) 7.7[0.90] 4.5[0.36] 3.8[0.31] 4.5[0.36] 7.8[1.76] 6.0[0.53] 9.9[1.66]
PCV (g=5) 8.1[0.86] 5.0[0.36] 4.5[0.32] 4.9[0.35] 8.3[1.74] 6.1[0.51] 10.9[1.52]

PCV (g=10) 8.5[0.86] 5.1[0.36] 4.7[0.32] 5.1[0.35] 8.6[1.74] 6.3[0.51] 11.3[1.53]
PCV (g=15) 8.6[0.88] 5.3[0.36] 5.0[0.32] 5.3[0.35] 8.9[1.76] 6.4[0.52] 11.9[1.61]

GDCV 7.8[0.88] 2.4[0.41] 0.7[0.62] 2.5[0.42] 7.6[1.80] 5.4[0.55] 9.9[1.65]
GICV 8.4[0.97] 2.4[0.42] 0.7[0.62] 2.5[0.41] 8.0[1.88] 5.5[0.55] 9.8[1.71]
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method. Then, the obtained estimate can be visually
inspected to detect the segments of rapid and con-
stant intervals of the estimated function variability.
The number of the low variability intervals can be
used as a value for the parameter g that is related to
the memory size of the dynamical part of the Ham-
merstein system.

In conclusion, the PCV (g) method can greatly
improve the accuracy of the kernel GRNN estimate
in the context of the Hammerstein system identi-
fication and as such it is the method of choice in
practical applications.

Regarding the MCV (l) procedure it has been
observed that it works poorly for the case of the pos-
itively correlated residual noise {εt} in (22). Also
the corresponding S-value for MCV (l) is signifi-
cantly smaller than the one of the PCV (g) method.
The algorithms GDCV and GICV do not work well
in almost all examined cases.

Finally, it is worth mentioning that aforemen-
tioned data-driven bandwidth selection methods
have been developed for the fixed design regres-
sion case where the distribution of the input data
does not play any significant role. In the Hammer-
stein system context we have stochastic input pro-
cess with unknown distribution along with the com-
plex residual noise {εt} defined in (22).
For the related studies concerning the classical re-
gression analysis we refer to [29, 34].

6 Future Work

This paper examines several cross-validation data-
driven algorithms for selecting the bandwidth of the
kernel GRNN estimate applied for nonparametric
identification of the Hammerstein system. The con-
ducted experimental studies reveal that the parti-
tioned cross-validation (PCV) method can be rec-
ommended in practical applications of the Hammer-
stein system. Our paper is focusing on the choice
of the global bandwidth. It would be a logical ex-
tension to consider similar studies for the local and
semi-local bandwidth specifications. This would in-
clude the k−nearest neighbor methods and their ex-
tensions such as random forest [12, 13].

The examined bandwidth selection procedures
can also be directly extended to the multiple-input
Hammerstein system [35, 20], where one wishes

to estimate the d−dimensional system nonlinearity
m(u), u ∈ Rd . In this case the kernel GRNN esti-
mate in (6) takes the form

m̂h(u) =
∑n

i=1YiKh(||u−Ui||)
∑n

j=1 Kh(||u−Uj||)
,

where Kh(·) = h−dK(·/h) is the scaled univariate
kernel function. This is the single-bandwidth coun-
terpart of the estimate in (6). The multiple band-
width generalizations of m̂h(u) would be worth fur-
ther studies.

Yet another extension of interest would be to
consider the time-varying version of (11), i.e., when

Yt = mt(Ut)+ εt ,

where mt(·) are functions that smoothly vary with
time. In this case one should design kernel GRNN
estimates that combine smoothing in both the input
signal domain as well as the time domain, see [23]
for some studies into this direction.

In addition, it is worthwhile to explore the band-
width selection problem for other types of impor-
tant block-oriented systems such as Wiener, sand-
wich and parallel models [6].
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method. Then, the obtained estimate can be visually
inspected to detect the segments of rapid and con-
stant intervals of the estimated function variability.
The number of the low variability intervals can be
used as a value for the parameter g that is related to
the memory size of the dynamical part of the Ham-
merstein system.

In conclusion, the PCV (g) method can greatly
improve the accuracy of the kernel GRNN estimate
in the context of the Hammerstein system identi-
fication and as such it is the method of choice in
practical applications.

Regarding the MCV (l) procedure it has been
observed that it works poorly for the case of the pos-
itively correlated residual noise {εt} in (22). Also
the corresponding S-value for MCV (l) is signifi-
cantly smaller than the one of the PCV (g) method.
The algorithms GDCV and GICV do not work well
in almost all examined cases.

Finally, it is worth mentioning that aforemen-
tioned data-driven bandwidth selection methods
have been developed for the fixed design regres-
sion case where the distribution of the input data
does not play any significant role. In the Hammer-
stein system context we have stochastic input pro-
cess with unknown distribution along with the com-
plex residual noise {εt} defined in (22).
For the related studies concerning the classical re-
gression analysis we refer to [29, 34].

6 Future Work

This paper examines several cross-validation data-
driven algorithms for selecting the bandwidth of the
kernel GRNN estimate applied for nonparametric
identification of the Hammerstein system. The con-
ducted experimental studies reveal that the parti-
tioned cross-validation (PCV) method can be rec-
ommended in practical applications of the Hammer-
stein system. Our paper is focusing on the choice
of the global bandwidth. It would be a logical ex-
tension to consider similar studies for the local and
semi-local bandwidth specifications. This would in-
clude the k−nearest neighbor methods and their ex-
tensions such as random forest [12, 13].

The examined bandwidth selection procedures
can also be directly extended to the multiple-input
Hammerstein system [35, 20], where one wishes

to estimate the d−dimensional system nonlinearity
m(u), u ∈ Rd . In this case the kernel GRNN esti-
mate in (6) takes the form

m̂h(u) =
∑n

i=1YiKh(||u−Ui||)
∑n

j=1 Kh(||u−Uj||)
,

where Kh(·) = h−dK(·/h) is the scaled univariate
kernel function. This is the single-bandwidth coun-
terpart of the estimate in (6). The multiple band-
width generalizations of m̂h(u) would be worth fur-
ther studies.

Yet another extension of interest would be to
consider the time-varying version of (11), i.e., when

Yt = mt(Ut)+ εt ,

where mt(·) are functions that smoothly vary with
time. In this case one should design kernel GRNN
estimates that combine smoothing in both the input
signal domain as well as the time domain, see [23]
for some studies into this direction.

In addition, it is worthwhile to explore the band-
width selection problem for other types of impor-
tant block-oriented systems such as Wiener, sand-
wich and parallel models [6].
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method. Then, the obtained estimate can be visually
inspected to detect the segments of rapid and con-
stant intervals of the estimated function variability.
The number of the low variability intervals can be
used as a value for the parameter g that is related to
the memory size of the dynamical part of the Ham-
merstein system.

In conclusion, the PCV (g) method can greatly
improve the accuracy of the kernel GRNN estimate
in the context of the Hammerstein system identi-
fication and as such it is the method of choice in
practical applications.

Regarding the MCV (l) procedure it has been
observed that it works poorly for the case of the pos-
itively correlated residual noise {εt} in (22). Also
the corresponding S-value for MCV (l) is signifi-
cantly smaller than the one of the PCV (g) method.
The algorithms GDCV and GICV do not work well
in almost all examined cases.

Finally, it is worth mentioning that aforemen-
tioned data-driven bandwidth selection methods
have been developed for the fixed design regres-
sion case where the distribution of the input data
does not play any significant role. In the Hammer-
stein system context we have stochastic input pro-
cess with unknown distribution along with the com-
plex residual noise {εt} defined in (22).
For the related studies concerning the classical re-
gression analysis we refer to [29, 34].

6 Future Work

This paper examines several cross-validation data-
driven algorithms for selecting the bandwidth of the
kernel GRNN estimate applied for nonparametric
identification of the Hammerstein system. The con-
ducted experimental studies reveal that the parti-
tioned cross-validation (PCV) method can be rec-
ommended in practical applications of the Hammer-
stein system. Our paper is focusing on the choice
of the global bandwidth. It would be a logical ex-
tension to consider similar studies for the local and
semi-local bandwidth specifications. This would in-
clude the k−nearest neighbor methods and their ex-
tensions such as random forest [12, 13].

The examined bandwidth selection procedures
can also be directly extended to the multiple-input
Hammerstein system [35, 20], where one wishes

to estimate the d−dimensional system nonlinearity
m(u), u ∈ Rd . In this case the kernel GRNN esti-
mate in (6) takes the form

m̂h(u) =
∑n

i=1YiKh(||u−Ui||)
∑n

j=1 Kh(||u−Uj||)
,

where Kh(·) = h−dK(·/h) is the scaled univariate
kernel function. This is the single-bandwidth coun-
terpart of the estimate in (6). The multiple band-
width generalizations of m̂h(u) would be worth fur-
ther studies.

Yet another extension of interest would be to
consider the time-varying version of (11), i.e., when

Yt = mt(Ut)+ εt ,

where mt(·) are functions that smoothly vary with
time. In this case one should design kernel GRNN
estimates that combine smoothing in both the input
signal domain as well as the time domain, see [23]
for some studies into this direction.

In addition, it is worthwhile to explore the band-
width selection problem for other types of impor-
tant block-oriented systems such as Wiener, sand-
wich and parallel models [6].
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