PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The stability of xenotime in high Ca and Ca-Na systems, under experimental conditions of 250–350°C and 200–400 MPa : the implications for fluid-mediated low-temperature processes in granitic rocks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
he stability of xenotime was tested by experiments in the presence of a silicate mineral assemblage and two different fluids, 2M Ca(OH)2 or Na2Si2O5 + H2O, under P-T conditions of 200-400 MPa and 250-350°C. The xenotime was stable in runs with 2M Ca(OH)2, replicating the low-temperature metasomatic alterations of granitic rocks, except in experiment at 350°C and 400 MPa, where some (Y,REE)-rich fluorapatite formed. Experiments with Na2Si2O5 + H2O resulted in significant xenotime alteration and partial replacement by an unknown (Y,HREE)-rich silicate, and in the formation of minor amounts of (Y,REE)-rich fluorapatite. The latter indicate preferential partitioning of Y and REE into silicates over phosphates during low-temperature, metasomatic processes in a high Na-Ca system, similar to peralkaline granitic rocks.
Rocznik
Strony
316–324
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Polish Academy of Sciences, Institute of Geological Sciences, Research Centre in Kraków, Senacka 1, 31-002 Kraków, Poland
  • Jagiellonian University, Institute of Geological Sciences, Oleandry 2a, 30-063 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Broska, I., Will iams, C.T., Janák, M., Nagy, G., 2005. Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians, Slovakia. Lithos, 82: 71-83.
  • 2. Budzyń, B., Harlov, D.E., 2011. The experimental alteration of xenotime in the presence of fluids and aluminosilicate minerals. Mineralia Slovaca, 42: 173-174.
  • 3. Budzyń, B., Harlov, D.E., Williams, M.L., Jercinovic, M.J., 2011. Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. American Mineralogist, 96: 1547-1567.
  • 4. Budzyń, B., Harlov, D.E., Konečný, P., 2013. Experimental, fluid-aided, low temperature mobilization of Y+REE and actinides between (Y+REE)-bearing phosphates and silicates. Mineralogia - Special Papers, 41: 34.
  • 5. Budzyń, B., Harlov, D.E., Majka, J., Kozub, G.A., 2014. Experimental constraints on the monazite-fluorapatite-allanite and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote phase relations as a function of pressure, temperature, and Ca vs. Na activity in the fluid. Geophysical Research Abstracts, 16: EGU2014-8583.
  • 6. Budzyń, B., Konečný, P., Kozub-Budzyń, G.A., 2015. Stability of monazite and disturbance of Th-U-Pb system under experimental conditions of 250-350°C and 200-400 MPa. Annales Societatis Geologorum Poloniae, 85: 405-425.
  • 7. Cherniak, D.J., 2006. Pb and rare earth elements diffusion in xenotime. Lithos, 88: 1-14.
  • 8. Cherniak, D.J., Watson, E.B., Grove, M., Harrison, T.M., 2004. Pb diffusion in monazite: a combined RBS/SIMS study. Geochimica et Cosmochimica Acta, 68: 829-840.
  • 9. Cocherie, A., Legendre, A., 2007. Potential minerals fordetermining U-Th-Pb chemical age using electron microprobe. Lithos, 93: 288-309.
  • 10. Fletcher, I.R., Rasmussen, B., McNaughton, N.J., 2000. SHRIMP U-Pb geochronology of authigenic xenotime and its potential for dating sedimentary basins. Australian Journal of Earth Sciences, 47: 845-859.
  • 11. Förster, H.J., 1998. The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany. Part II: Xenotime. American Mineralogist, 83: 1302-1315.
  • 12. Gardes, E., Jaoul, O., Montel, J., Seydoux-Guillaume, A.M., Wirth, R., 2006. Pb diffusion in monazite: an experimental study of Pb2+ + Th4+ - 2Nd3+ interdiffusion. Geochimica et Cosmochimica Acta, 70: 2325-2336.
  • 13. Harlov, D.E., Wirth, R., 2012. Experimental incorporation of Th into xenotime at middle to lower crustal P-T utilizing alkali-bearing fluids. American Mineralogist, 97: 641-652.
  • 14. Harlov, D.E., Wirth, R., Hetherington, C.J., 2011. Fluid-mediated partial alteration in monazite: the role of coupled dissolution-reprecipitation in elementre distribution and mass transfer. Contributions to Mineralogy and Petrology, 162: 329-348.
  • 15. Hetherington, C.J., Harlov, D.E., 2008. Metasomatic thorite and uraninite inclusion in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: Mechanics and fluid chemistry. American Mineralogist, 93: 806-820.
  • 16. Hetherington, C.J., Jercinovic, M.J., Williams, M.L., Mahan, K., 2008. Understanding geologic processes with xenotime: composition, chronology, and a protocol for electron microprobe microanalysis. Chemical Geology, 254: 133-147.
  • 17. Hetherington, C.J., Harlov, D.E., Budzyń, B., 2010. Experimental initiation of dissolution-reprecipitation reactions in monazite and xenotime: the role of fluid composition. Mineralogy and Petrology, 99: 165-184.
  • 18. Jambor, J.L., Roberts, A.C., Grice, J.D., Birkett, T.C., Groat, L.A., Zajac, S., 1998. Gerenite-(Y), (Ca,Na)2(Y,REE)3Si6O18-2H2O, a new mineral species, and an associated Y-bearing gadolinite-group mineral, from the Strange Lake peralkaline complex, Quebec-Labrador. Canadian Mineralogist, 36: 793-800.
  • 19. Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J.-O., Spandler, C., 2008. Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite-monazite-xenoime phase relations from 250 to 610°C. Journal of Metamorphic Geology, 26: 509-526.
  • 20. Majka, J., Pršek, J., Budzyñ, B., Bačík, P., Barker, A., Lodziński, M., 2011. Fluorapatite-hingganite-(Y) coronas as products of fluid induced xenotime-(Y) breakdown in the Skoddefjellet pegmatite (Svalbard). Mineralogical Magazine, 75: 159-167.
  • 21. Putnis, A., 2002. Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66: 689-708.
  • 22. Putnis, A., 2009. Mineral replacement reactions. Reviews in Mineralogy and Geochemistry, 70: 87-124.
  • 23. Rasmussen, B., 2005. Radiometric dating of sedimentary rocks: the application of diagenetic xenotime geochronology. Earth-Science Reviews, 68: 197-243.
  • 24. Rasmussen, B., Fletcher, I.R., Bengston, S., McNaughton, N.J., 2004. SHRIMP U-Pb dating of diagenetic xenotime in the Stirling Range Formation, Western Australia: 1.8 biliion year minimum age for the Stirling biota. Precambrian Research, 133: 329-337.
  • 25. Rasmussen, B., Fletcher, I.R., Muhling, J.R., 2011. Response of xenotime to prograde metamorphism. Contributions to Mineralogy and Petrology, 162: 1259-1277.
  • 26. Seydoux-Guillaume, A.M., Paquette, J.L., Wiedenbeck, M., Montel, J.M., Heinrich, W., 2002. Experimental resetting of the U-Th-Pb systems in monazite. Chemical Geology, 191: 165-181.
  • 27. Suzuki, K., Kato, T., 2008. CHIME dating of monazite, xenotime, zircon and polycrase: Protocol, pitfalls and chemical criterion of possibly discordant age data. Gondwana Research, 14: 569-586.
  • 28. Teufel, S., Heinrich, W., 1997. Partial resetting of the U-Pb isotope system in monazite through hydrothermal experiments: an SEM and U-Pb isotope study. Chemical Geology, 137: 273-281.
  • 29. Tropper, P., Manning, C.E., Harlov, D.E., 2011. Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O-NaCl at 800 °C and 1 GPa: Implications for REE and Y transport during high-grade metamorphism. Chemical Geology, 282: 58-66.
  • 30. Vilalva, F.C.J., Vlach, S.R.F., 2010. Major- and trace-element composition of REE-rich turkestanite from peralkaline granites of the Morro Redondo Complex, Graciosa Province, south Brasil. Mineralogical Magazine, 74: 645-658.
  • 31. Williams, M.L., Jercinovic, M.J., Harlov, D.E., Budzyñ, B., Hetherington, C.J., 2011. Resetting monazite ages during fluid-related alteration. Chemical Geology, 283: 218-225.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9167d29-5890-4928-b96d-363533ee4b66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.