PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Voltage on Properties of 30HGSA Steel Coatings by Supersonic Supersonic arc Metallization Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work is a study aimed at optimizing the process of superarc metallization, with a focus on the effect of stress on the properties of the spraying coatings. In this work, 30HGSA grade steel wire was used for the coating of 45 steel, widely used in mechanical engineering. The use of supersonic arc metallizer SX-600 allowed to obtain coatings at different voltages (32 V, 38 V and 44 V) and the same current strength. Various metallization process parameters such as material feed rate, voltage, current, distance and nozzle geometry are discussed in this paper. Using various analytical techniques including X-ray diffraction analysis, microscopy, microhardness and corrosion resistance tests, the qualities of the coatings were evaluated. Particular attention was paid to analyzing the phase composition of the coatings, porosity, substrate bond strength and tribological characteristics. It was found that the voltage during the electric arc metallization process has a significant effect on these characteristics. The selected optimum voltage allows to obtain dense and homogeneous coatings with improved performance properties. The results of the study revealed that the best physical and mechanical properties were exhibited by the sample processed at 38 V, which showed lower porosity and improved strength characteristics compared to the other samples. These findings can be used to improve manufacturing processes in industries such as automotive and mechanical engineering, where restoration and improved performance of worn parts is required.
Twórcy
  • PLASMASCIENCE LLP, Gogol str. 7G, Ust-Kamenogorsk, Kazakhstan
  • Faculty of Engineering and Technology, Shakarim University, Glinka Street, 20a, Semey, Kazakhstan
  • PLASMASCIENCE LLP, Gogol str. 7G, Ust-Kamenogorsk, Kazakhstan
  • Faculty of Engineering and Technology, Shakarim University, Glinka Street, 20a, Semey, Kazakhstan
  • Faculty of Engineering and Technology, Shakarim University, Glinka Street, 20a, Semey, Kazakhstan
  • Faculty of Engineering and Technology, Shakarim University, Glinka Street, 20a, Semey, Kazakhstan
Bibliografia
  • 1. Fauchais, P.L., Heberlein, J.V., Boulos, M.I. Industrial applications of thermal spraying technology. In: Thermal Spray Fundamentals: From Powder to Part, 2014; 1401–1566.
  • 2. Davis, J.R. (Ed.). Handbook of thermal spray technology. ASM International. 2004.
  • 3. Fukumoto, M. The current status of thermal spraying in Asia. 2008.
  • 4. lyushchanka, A.P., Baray, S.G., Letsko, A.I., Talako, T.L., Manoila, Y.D., Janu, Y., Patra, M.K. Preparation of Ti-Si-C system and their ceramic composite coatings using gas flame spraying for microwave absorbing applications. Surface and Coatings Technology, 2021; 405: 126631.
  • 5. Jonda, E., Łatka, L., Lont, A., Gołombek, K., Szala, M. The effect of HVOF spray distance on solid particle erosion resistance of WC-based cermets bonded by Co, Co-Cr and Ni deposited on Mgalloy substrate. Advances in Science and Technology Research Journal, 2024; 18(2): 115–128. doi. org/10.12913/22998624/184025
  • 6. Nowakowska, M., Łatka, L., Sokołowski, P., Szala, M., Toma, F.-L., Walczak, M. Investigation into microstructure and mechanical properties effects on sliding wear and cavitation erosion of Al2O3–TiO2 coatings sprayed by APS, SPS and S-HVOF. Wear, 2022; 508, 204462. doi.org/10.1016/j.wear.2022.204462
  • 7. Rakhadilov, B., Buitkenov, D., Sagdoldina, Z., Idrisheva, Z., Zhamanbayeva, M., Kakimzhanov, D. Preparation and characterization of NiCr/NiCr- Al2O3/Al2O3 multilayer gradient coatings by gas detonation spraying. Coatings, 2021; 11(12): 1524. doi.org/10.3390/coatings11121524
  • 8. Kengesbekov, A., Rakhadilov, B., Sagdoldina, Z., Buitkenov, D., Dosymov, Y., Kylyshkanov, M. Improving the efficiency of air plasma spraying of titanium nitride powder. Coatings, 2022; 12(11): 1644. doi.org/10.3390/coatings12111644
  • 9. Kadhim, N.F., Hubi Haleem, A., Awad, S.H. Modification of microstructure and surface properties of Ti-6Al-4V alloy by MoSi2 particles using microarc oxidation process. Advances in Science and Technology Research Journal, 2024; 18(2). doi. org/10.12913/22998624/184025
  • 10. Srikanth, A., Basha, G.M.T., Venkateshwarlu, B. A brief review on cold spray coating process. Materials Today: Proceedings, 2020; 22: 1390–1397. doi. org/10.1016/j.matpr.2020.01.482
  • 11. Szala, M., Łatka, L., Walczak, M., Winnicki, M. Comparative study on the cavitation erosion and sliding wear of cold-sprayed Al/Al2O3 and Cu/Al2O3 coatings, and stainless steel, aluminium alloy, copper and brass. Metals, 2020; 10(7): 856. doi.org/10.3390/met10070856
  • 12. Özkan, D.,, Yılmaz, M.A., Szala, M., Türküz, C., Chocyk D, Tunç, C., Onur, G., Walczak, M., Pasierbiewicz, K., Yağcı M.B. Effects of ceramic-based CrN, TiN, and AlCrN interlayers on wear and friction behaviors of AlTiSiN + TiSiN PVD coatings. Ceramics International, 2021; 47(14): 20077–20089. doi.org/10.1016/j.ceramint.2021.04.015
  • 13. Zhang, J., Saha, D. C., Jahed, H. Microstructure and mechanical properties of plasma transferred wire arc spray coating on aluminum cylinder bores. Surface and Coatings Technology, 2021; 426, 127757. doi. org/10.1016/j.surfcoat.2020.127757
  • 14. Devaraj, S., McDonald, A., Chandra, S. Metallization of porous polyethylene using a wire-arc spray process for heat transfer applications. Journal of Thermal Spray Technology, 2021; 30: 145–156. doi.org/10.1007/s11666-020-01101-z
  • 15. Weis, S., Brumm, S., Grunert, R., Morgenschweis, J., Bosler, J., Grund, T. Influence of Current Modulation on Melting Behavior during Wire Arc Spraying. Metals, 2022; 12(8): 1347. doi.org/10.3390/met12081347
  • 16. Sagdoldina, Z., Rakhadilov, B., Kenesbekov, A., Stepanova, O., Buitkenov, D. Phase-structural Condition of the Ti-Al System Treated by Irradiation with Si Ions and Heat Treatment. In 2019 IEEE 9th International Conference Nanomaterials: Applications & Properties (NAP) 2019; 1–3.
  • 17. Ndumia, J.N., Kang, M., Gbenontin, B.V., Lin, J., Nyambura, S.M. A review on the wear, corrosion and high-temperature resistant properties of wire arc-sprayed Fe-based coatings. Nanomaterials, 2021; 11(10): 2527. doi.org/10.3390/nano11102527
  • 18. Wielage, B., Pokhmurska, H., Student, M., Gvozdeckii, V., Stupnyckyj, T., Pokhmurskii, V. Ironbased coatings arc-sprayed with cored wires for applications at elevated temperatures. Surface and Coatings Technology, 2013; 220: 27–35. doi. org/10.1016/j.surfcoat.2012.12.013
  • 19. Matyushkin, B.A., Denisov, V.I., Tolkachev, A.A. Technological features of electric arc metallization in the agricultural sector. Welding Production, 2016; (12): 46–50. [in Russian]
  • 20. Logachev, V.N., Litovchenko, N.N. Electric arcmetallization: ways to improve equipment and technology. Proceedings of GOSNITI, 2014; 117: 228–234. [in Russian]
  • 21. ASTM G99-05. Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM International: West Conshohocken, PA, USA. 2005; Available on- line: http://www.astm.org/cgi-bin/resolver.cgi?G99-05
  • 22. Image J program (ImageProcessingandDataAnalysisinJava). Available from: http://rsb.info.nih.gov/ij/
  • 23. Ibatullin I.D., Karlova M.D., Zagidullina D.R. Devices and methods for assessing the quality of coatngs. Izv. of Samara Scientific Center of RAS. 2016; 18(4): 291–6. (in Russian)
  • 24. Kiryukhantsev-Korneev F.V. Pulsed Magnetron Sputtering of ceramic SHS targets as a promising technology for obtaining multifunctional coatings. Physicochemistry of Surface and Material Protection. 2020; 56(2): 343–357. doi.org/10.1134/S2070205120020124
  • 25. Lopata, A, Smirnov, I., Holovashchuk, M., Lopata, V. Investigation of the properties of coatings obtained by electric arc spraying. Problems of Tribology. 2023; 28(1/107): 73–80. doi. org/10.31891/2079-1372-2023-107-1-73-80
  • 26. Chambers and complexes of supersonic arc metallization equipment. Available from: https://csklinok. ru/materialy/dugovaya-metallizaciya.html.
  • 27. Vilage, B., Pohmurska, H., Student, M., Gvozdetsky, V., Stupnitsky, T., Pohmurski, V. Iron-based coatings sprayed by cored wire arc welding for elevated temperature applications. Surface and Coatings Technology. 2013; 220: 27–35. doi.org/10.1016/j. surfcoat.2012.12.013
  • 28. Newbery, A.P., Grant, P.S. Arc Sprayed Steel: Microstructure in Severe Substrate Features. Journal of Thermal Spray Technology. 2009; 18(2): 256–71. https://doi.org/10.1007/s11666-009-9300-y
  • 29. Sayfullin, R.N., Pavlov, A.P. Estimation of adhesion strength of coatings obtained by electrocontact mesh welding depending on welding modes. Bulletin of Polotsk State University. Series B. Industry. Applied Sciences. 2013; 3: 91–96. (in Russian)
  • 30. Ushakov, M.V., Kutepov, S.N., Klementiev, D.S., Kalinin, A.A. influence of technological modes of spraying of protective coatings on physical-mechanical and corrosion properties. Izvestiya Tula State University. Technical Sciences. 2023; (2): 584–90. (in Russian)
  • 31. Mikheev, A.E., Alyakretsky, R.V., Mikutsik, D.A., Girn, A.V. Improvement of the design of electric arc metallizer. Reshetnev Readings. 2013; 1(17): 26–28. (in Russian)
  • 32. Hwang, B., Lee, S., Ahn, J. Effect of oxides on wear resistance and surface roughness of ferrous coated layers fabricated by atmospheric plasma spraying. Materials Science and Engineering: A. 2002; 335(1–2): 268–80. doi.org/10.1016/ S0921-5093(01)01937-2
  • 33. Rakhadilov, B., Buitkenov, D., Sagdoldina, Z., Idrisheva, Z., Zhamanbayeva, M., Kakimzhanov, D. Preparation and characterization of NiCr/NiCrAl2O3/Al2O3 multilayer gradient coatings by gas detonation spraying. Coatings. 2021; 11(12): 1524. doi.org/10.3390/coatings11121524
  • 34. Lin, J., Wang, Z., Lin, P., Cheng, J., Zhang, J., Zhang, X. Microstructure and corrosion resistance of iron-based coatings prepared by double-wire arc sputtering. J. Therm. Spray Technol. 2014; 23: 333–39. doi: 10.1007/s11666-013-0017-6
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9138a7e-df52-4b9a-b498-473ee2e31756
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.