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Abstract 

To simulate the ultra fine grinding process of solid matter composed of crystals, 

agglomerates or aggregates – a random process that bears the features of 

a physical chemistry collective process – we can use algorithms based on 

probability methods, as was proved in earlier publications [9, 10, 13]. These 

publications also discuss grinding simulations for uniform and non-uniform size 

distributions. In this paper, we describe the method of determining a correlation 

factor between the parameters that describe a simulation (the energy factor) and 

the real process time. This correlation is the most important piece of 

information required to define the kinetics of the process, as it allows to judge 

the real process by examining the simulation results. 

Key words: soft computing, simulation of physical chemistry processes, Monte 

Carlo method, size distribution of particles, grinding 

1 Introduction 

Non-quantum collective processes are such processes that take place in 

large sets of grains (or generally speaking – elements) and change the distri-

bution of a certain attribute of these sets [10, 11]. Collective processes are 

strongly affected by the internal interactions between the elements of a large 

set. These interactions have a significant impact on the result of the process. 

In the case of a grinding process, it is the grain size distribution that changes 

p(l).  
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The ultra fine solid matter grinding process changes the grain size distribu-

tion in a sample. Disperse dyes, which were being measured in the experi-

ments and whose models will be tested, contain molecular crystals, which 

range between a few manometers and a dozen micrometers in size. The num-

ber of grains per fraction is between 1 and 20 million. Naturally, the size dis-

tributions of these crystals p(l) are discrete distributions. Because of the large 

number of fractions and the very narrow fraction width, it is possible in this 

case to approximate the size distributions with continuous functions. The 

crystal forming process in turn (mass crystallization from solutions) lets us 

use continuous probability distributions for approximations. The size densities 

are then approximated by two-parameter probability density functions [6]. 

The log-normal distribution density is the best approximation (which is abso-

lutely natural and was proved as the Edgeworth-Kapteyn theorem [7, 8]): 
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where: l is the grain diameter, m and σ are the density function parameters. 

An example of a log-normal distribution is illustrated in Figure 1. 
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Figure 1. An example of approximating the size distribution (bar graph) p(l) by  

a log-normal density function p(l), where ΔP(l) is the share of each fraction in the 

entire sample 

Two forms of the size density functions can be used for the calculations: 

the mass density or the amount density function pi(l). Because the Edgeworth-
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Kapteyn theorem is applicable, we used the mass size density function for 

calculating the model. 

The aim of a process simulation is to determine the changes in size distri-

bution in time. 

Random and empirical models based on approximating functionals defined 

on size distribution densities [9- 14] are used to simulate the grinding process 

kinetics p(l,t). 

The empirical models are based on approximating functionals, which are 

defined on a set of size distribution densities. Selected moments of approxi-

mating the size density distributions by density functions are most commonly 

used. For example, the distribution average or the grain size lw, for which 

the cumulated size distribution approximation assumes the defined value 

w(lw), is used in [1, 3, 4] and [6]. The (t) or lw(t) dependencies approximate 

the process kinetics. Although the approximation functions are used at the 

core of optimisation algorithms and process automatics [8, 11], they do not 

allow to simulate the process in a virtual environment. 

2 Simulation model of ultra fine grinding 

The starting point for the model used for the simulation is the assumption 

that a single grain may shatter into a collection of smaller grains and the prob-

ability of creating a collection of grains of a given size depends on the en-

thalpy of each element of the collection [2, 5, 14]. 

As the grain is shattered, the volume enthalpy remains constant (i.e. the 

volume enthalpy of the initial grain is equal to the sum of volume enthalpies 

of all grains in the collection, because we assume that the set does not lose 

mass. 

Let the energy ΔE0 (calculated for a single grain) be delivered to the set 

and {Ki}N be the set of grain collections with smaller grain sizes, created from 

the initial grain.  

The collection KN is a set of grains with the same sizes, equal to the crys-

tallisation nucleus size. 

For each collection Ki we can determine the energy required to create 

a new surface ΔEi: 
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where: l is the number of same-size grains in the collection Ki , GSlji is the 

surface enthalpy of a single grain whose size corresponds to the index l in the 

collection Ki, and j is the fraction index in the collection. 

By adding up all ΔEi for         we obtain: 
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which is the probability space normalising factor. 

The probability of the initial grain shattering into the given collection 

Ki(pi) is: 
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In the simulations that we conducted we assumed the energy E0 (E0 – en-

ergy required to shatter a grain into nuclei) to be the standard energy delivered 

during one instance of grinding a single grain. It turned out that this assump-

tion allowed us to normalise the calculations. In life, this means that regard-

less of the initial grain size, the process will always be identical for an energy 

defined by the factor k that is delivered to the grain ΔE0: 

00 EkE  , (5) 

We assumed that the grains shatter homogeneously, which means that the 

shapes of the resulting grains are the same as the shape of the initial grain. Of 

course, this assumption is a gross simplification, but it is possible (and unfor-

tunately necessary) in the initial research testing phase. It is also an assump-

tion that should not lead to major errors in the simulation results if there are 

grains created from numerous nuclei and in the case of molecular crystals. 

3 Simulation results 

For the simulation, we assumed an initial crystal sample with a log-normal 

mass distribution described by formula (1) with the parameter values 

m = 1.742 and  = 0.8. It was assumed that a crystal of size Rmax = L (the larg-

est in the sample) consists of 10,000 nuclei. The sample was divided into 

10,000 fractions, corresponding to the various crystal sizes (i.e. different 

numbers of nuclei that they are composed of). The number of crystals for each 

fraction was calculated from the distribution function. 

A simulation using the algorithm shown in Figure 2 was performed for 

each fraction. The algorithm uses a modified Monte-Carlo method [13]. It 

anticipates that each crystal from a given fraction could initially have been 

shattered into two pieces and the probability of this happening depends on the 

change in the surface enthalpy, which is described by formula (4).  
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Figure 2. Algorithm used for the simulation 
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If this event took place, then the remaining shattering energy was dimin-

ished by the energy used to change the enthalpy in the process. The resulting 

grains formed a collection, from which new crystals were selected using the 

roulette-wheel method that could be further shattered. The process was 

stopped when the energy delivered to a single crystal became depleted or if 

a single crystal shattering event did not take place in the resulting collection 

thus formed.  

All crystals from a given fraction were treated in the same way. A single 

crystal was shattered into a collection of grains and then the results obtained 

for all fractions were added up. 

Selecting the grains for shattering using the roulette-wheel method intro-

duced a certain dependence between the probability and the shattering me-

dium. Several options for this dependence were checked in the simulation [9]: 

 crystals selected with an equal probability, 

 crystals selected depending on their radius, 

 selection depending on the crystals’ cross sections, 

 grains selected depending on their volume. 

If the selection probability is equal for all crystals, their shattering depends 

solely on the change of the surface enthalpy. In this case the smallest possible 

changes to the grains’ surface areas are accepted. This means that splitting the 

nucleus off the crystal is the most probable event. Consequently, the resulting 

mass distribution shows too many crystals with their sizes close to the nucleus 

size (Figure 3a), which is not confirmed by any experiment results. 

 
a 

 
b 

Figure 3. Mass histograms obtained from a simulation for a sample with an initial 

uniform size distribution where a) the crystal selection probability does not depend on 

the crystal size, and b) the probability depends on the crystal size (l/l0 – crystal size 

compared to the nucleus radius) 

This fault was corrected by introducing a relation where the crystals are se-

lected depending on their size (Figure 3b) [9]. Further calculations use a de-
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pendence based on the grain cross section. This choice was motivated by two 

factors. First, the distribution obtained from the simulation was the closest 

that it could be to empirical data in terms of quality; a log-normal function 

approximation resulted in the smallest error. Second, introducing this depend-

ence reflects the real process, in which the crystals are shattered upon colli-

sion with the grinding medium, e.g. balls; and the probability of these colli-

sions depends on the active cross section [9]. 

The simulations generated histograms of crystal quantity distribution 

throughout the fractions. These dependencies were changed into mass distri-

bution histograms and then approximated by a log-normal function according 

to formula (1). The least square method based on the Levenberg-Marquardt 

algorithm was used for this approximation to determine the log-normal distri-

bution parameters m and  for selected histograms.  

Empirical data is provided in the form of mass distributions for samples 

collected from the grinding machine at various points in time [14]. Figure 4 

illustrates the change of the crystal size distribution over time during the 

grinding process. 

 

Figure 4. Changes in the distribution of crystal mass in the fractions over time in  

a real grinding process 

As shown in [12], the parameter that controls the process in the simulation 

described above can be described by the amount of energy administered to 

a single crystal, represented by the coefficient k in formula (5). Increasing this 

parameter changes the crystal size distribution in a similar manner as the dis-

tribution changes over time in a real process, which only seems natural, be-

cause the energy delivered into the system increases with the elapsed grinding 

time. 
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Figure 5 shows the histograms obtained for various different values of the 

coefficient k. The corresponding values of the parameters m and  are shown 

in Table 1. 

 

Figure 5. Mass distributions calculated in simulations for different values of the 

coefficient k 

Table 1. Values of the parameters m and  for different values of the coefficient k in 

the grinding process simulation 

k m  

0.01 2.489 0.296 

0.02 2.461 0.272 

0.03 2.392 0.284 

0.04 2.327 0.314 

0.05 2.262 0.354 

0.06 2.196 0.394 

0.07 2.125 0.421 

0.08 2.052 0.437 

0.09 1.982 0.446 

 

Changes of the real distribution parameter m over time t were considered 

for further research [14], as illustrated in Figure 6. 

The dependence m(t) from Figure 6 was approximated by a curve accord-

ing to the following equation: 
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The respective parameter values were calculated as follows: p1 = 0.28 

(p1 = 0.07), p2 = -1.45 (p2 = 0.07), p3 = 0.0037 (p3 = 0.0002), 

p4 = 0.36 (p4 = 0.11). 

 

Figure 6. Changes of the parameter m over time in a real process 

In order to obtain a linear dependence of m on the composite function x(t), 

the function x(t) was determined. It turned out that the best match to a linear 

dependence was obtained by applying a transformation according to for-

mula (7): 
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After changing m(t) (6) to m(x) (7) we obtain the line: 

  bkakm  , (8) 

where: a = 1, b = 0.28104. 

The results of the simulation ms(k) shown in Table 1 were approximated by 

the straight line: 

  sss bkakm  , (9) 

where: as =-5.50 (as = 0.42), bs = 2.50 (bs = 0.02). 
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The change of the parameter m over time t (increase of m(x(t)) in formula 

(8)) corresponds to the same change of this parameter in the simulation (in-

crease of ms(k) – formula (10)). On this basis and by comparing the curves 

obtained it is possible to calculate the value of coefficient k for any given 

point in time t:  
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s
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xmtxm
k

0
 , 

(10) 

Figure 7 illustrates the relation between the simulation coefficient k and 

the real process time t. By comparing these two parameters it is possible to 

calculate the energy required to shatter single crystals in the simulation in 

order to obtain a distribution that corresponds to the given moment in time, 

which defines the kinetics of the modelled process. 

 

Figure 7. Coefficient k of the energy delivered in a simulation in relation to the time 

in a real process 

When comparing the values of the size distributions in Figures 4 and 5 it is 

clearly apparent that the adopted range for the coefficient k (0 ≤ k ≤ 0.9) is too 

narrow and should be enlarged. Even for such small possibilities of comparing 

the size distributions obtained from simulations and the real experiment, one 

can see that the graphic distribution representations corresponding to k = 0, 

k = 0.05 and k = 0.09, respectively, are almost identical with the distributions 

corresponding to grinding times t = 0 min, t = 30 min and t = 60 min. 
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4 Conclusions 

As was demonstrated in previous publications [9, 10, 13] algorithms 

based on probability methods may be used to simulate the ultra fine grinding 

process of solid matter composed of crystals, agglomerates or aggregates—

a random process that bears the features of a physical chemistry collective 

process. Using the process simulation method for non-uniform size distribu-

tions as described above [13], we have performed simulations for various 

different values of the energy coefficient k, which describes the process in the 

simulation conditions. The results obtained were compared to the results of 

real process tests, which were conducted by one of the Authors [14].  

A qualitative comparison clearly indicates a similarity between the size 

distributions that were determined using those two methods; in the real proc-

ess it is possible to determine the dependence of a selected parameter that 

describes the size distribution on time (p(l,t)), whereas in the simulation ex-

periment it is possible to determine the same parameter from the energy coef-

ficient (p(l,k)).  

The quantitative analysis of the results obtained allows to determine the 

relation between the energy coefficient k and the real process elapsed time t, 

which means that the simulation results can be scaled to the real process. The 

publication describes such a scaling method based on calculations for the 

parameter m, which describes the log-normal grain size distributions. The 

results of applying this method are illustrated in a graph, which is shown in 

Figure 7. 

During our research we concluded that the simulation range (as described 

by the energy coefficient k) is too narrow, which means that the space of the 

size distributions obtained from the simulations does not fully match the space 

obtained from the real experiment. A comparison could only be performed for 

a time period from the process start (t = 0 and k = 0) to the time corresponding 

to 60 minutes of real grinding (k = 0.09). Yet even such a small range of the 

compared size distribution values seems to confirm the capabilities of the 

proposed method. 

The choice of the log-normal distribution parameter m as the figure upon 

which a correlation between the simulation and the real experiment was de-

termined also seems unfortunate. A different parameter should be taken for 

further research; the most reasonable of which seems to be the grain size, for 

which the size distribution achieves the maximum value (lpmax), or a quotient 

of this value and the size distribution value p(lpmax). 

Subsequent research on the above topic will be conducted to widen the 

space covered by the simulation experiment results (performing simulations 

for k values greater than 0.09) and to optimise the parameter choice for which 

the correlation between the real process time and the energy coefficient de-

scribing the simulation process will be determined. 
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