Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We show that splitting forcing does not have the weak Sacks property below any condition, answering a question of Laguzzi, Mildenberger and Stuber-Rousselle. We also show how some partition results for splitting trees hold or fail and we determine the value of cardinal invariants after an ω2-length countable support iteration of splitting forcing.
Wydawca
Rocznik
Tom
Strony
1--12
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom
Bibliografia
- [1] T. Bartoszyński and H. Judah, Set Theory: On the Structure of the Real Line, A. K. Peters, 1995.
- [2] A. Blass, Combinatorial cardinal characteristics of the continuum, in: Handbook of Set Theory, Springer, Dordrecht, 2010, 395-489.
- [3] J. Brendle, G. Hjorth, and O. Spinas, Regularity properties for dominating projective sets, Ann. Pure Appl. Logic 72 (1995), 291-307.
- [4] T. Jech, Set Theory, 2nd ed., Perspectives in Math. Logic, Springer, Berlin, 1997.
- [5] T. Jech and S. Shelah, A complete Boolean algebra that has no proper atomless complete subalgebra, J. Algebra 182 (1996), 748-755.
- [6] A. S. Kechris, On a notion of smallness for subsets of the Baire space, Trans. Amer. Math. Soc. 229 (1977), 191-207.
- [7] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, New York, 1995.
- [8] K. Kunen, Set Theory, College Publ., 2011.
- [9] G. Laguzzi, H. Mildenberger, and B. Stuber-Rousselle, On splitting trees, arXiv: 2004.10840 (2020).
- [10] J. Schilhan, Combinatorics and definability on the real line and the higher continuum, PhD thesis, 2020.
- [11] J. Schilhan, Tree forcing and definable maximal independent sets in hypergraphs, J. Symbolic Logic 87 (2022), 1419-1458.
- [12] D. Schrittesser, Definable discrete sets with large continuum, arXiv:1610.03331 (2016).
- [13] S. Shelah, Vive la Différence I: Nonisomorphism of ultrapowers of countable models, in: H. Judah et al. (eds.), Set Theory of the Continuum, Springer, New York, NY, 1992, 357-405.
- [14] O. Spinas, Dominating projective sets in the Baire space, Ann. Pure Appl. Logic 68 (1994), 327-342.
- [15] O. Spinas, Analytic countably splitting families, J. Symbolic Logic 69 (2004), 101-117.
- [16] O. Spinas, Splitting squares, Israel J. Math. 162 (2007), 57-73.
- [17] E. K. van Douwen, The integers and topology, in: K. Kunen and J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 111-167.
- [18] J. Zapletal, Forcing Idealized, Cambridge Tracts in Math. 174, Cambridge Univ. Press, 2008.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e90da4c4-018a-40e5-8ad3-f6e42b7da9ea