Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper focuses on the nonlinear Fractional Burgers-Huxley (FBH) equation in space-time, using the conformable fractional derivative (CFD) method. The paper aims to investigate the application of the Tanh-Coth method in order to find exact solutions to the FBH equation. Various exact analytical solutions for the FBH equation are obtained. Graphical representations are included to show the physical properties of the obtained solutions. The results reveal that the Tanh-Coth method is effective and dependable for finding exact solutions to the nonlinear FBH equation.
Rocznik
Tom
Strony
56--68
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
- Department of Mathematics, College of Science, Northern Border University, Arar, Saud Arabia
autor
- Department of Mathematics, College of Science, Northern Border University, Arar, Saud Arabia
autor
- Department of Mathematics, College of Science, Northern Border University, Arar, Saud Arabia
autor
- Department of Mathematics, College of Science, Northern Border University, Arar, Saud Arabia
autor
- Department of Mathematics, College of Science, Northern Border University, Arar, Saud Arabia
Bibliografia
- [1] Xiao, D., Fang, F., Pain, C.C., & Navon, I.M. (2017). A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications. Computer Methods in Applied Mechanics and Engineering, 317, 868-889. DOI: 10.1016/j.cma.2016.12.033.
- [2] Mohammed, A.A. (2017). An analytical method for space-time fractional nonlinear differential equations arising in plasma physics. Journal of Ocean Engineering and Science, 2(4), 288-292. DOI: 10.1016/j.joes.2017.09.002.
- [3] Lagergren, J.H., Nardini, J.T., Michael, L.G., Rutter, E.M., & Flores, K.B. (2020). Learning partial differential equations for biological transport models from noisy spatio-temporal data. Proceedings of the Royal Society A, 47620190800. DOI: 10.1098/rspa.2019.0800.
- [4] Xu, P., Long, F.-T., Shan, C., Li, G., Shi, F., & Wang, K.-J. (2024). The fractal modification of the Rosenau-Burgers equation and its fractal variational principle. Fractals, 32(06), P 2450121. DOI: 10.1142/S0218348X24501214.
- [5] Wang, K.-J., & Li, S. (2024). Study on the local fractional (3+1)-dimensional modified Zakharov- -Kuznetsov equation by a simple approach. Fractals, 32(12), 2450091. DOI: 10.1142/S0218348 X24500910
- [6] Wang, K.-J., Shi, F., Li, S., & Xu, P. (2024). The fractal Zakharov-Kuznetsov-Benjamin-Bona- -Mahony equation: Generalized variational principle and the semi-domain solutions. Fractals, 32(12), 2450079. DOI: 10.1142/S0218348X24500797.
- [7] Jamil, A.H., Abdullah, M.S.A., & Mohamed, A.E. (2024). Exploring novel applications of stochastic differential equations: Unraveling dynamics in plasma physics with the Tanh-Coth method. Results in Physics, 60, 107684. DOI: 10.1016/j.rinp.2024.107684.
- [8] Kumar, M.U. (2022). Recent development of adomian decomposition method for ordinary and partial differential equations. International Journal of Applied Computational Mathematics, 8, 81. DOI: 10.1007/s40819-022-01285-6.
- [9] Muhammad, N., Fengquan, Li, & Hijaz, A. (2019). Modified Laplace variational iteration method for solving fourth-order parabolic partial differential equation with variable coefficients. Computers and Mathematics with Applications, 78, 2052-2062. DOI: 10.1016/j.camwa.2019.03.053.
- [10] Wang, K.J., Shi, F., Li, S., & Xu, P. (2024). Dynamics of resonant soliton, novel hybrid interaction, complex N-soliton and the abundant wave solutions to the (2+1)-dimensional Boussinesq equation. Alexandria Engineering Journal, 105, 485-495. DOI: 10.1016/j.aej.2024.08.015.
- [11] Benhammouda, B. (2016). A novel technique to solve nonlinear higher-index Hessenberg differ- ential-algebraic equations by Adomian decomposition method. SpringerPlus 5, 590. DOI: 10.1186/ s40064-016-2208-3.
- [12] Wazwaz, A.M. (2007). New solitary-wave special solutions with compact and noncompact struc- tures for the Burgers-Huxley equation. Applied Mathematics and Computation, 184(2), 1002-1010.
- [13] Wazwaz, A.M. (2009). Partial Differential Equations and Solitary Waves Theory. Higher Education Press. Beijing and Springer-Verlag, Berlin.
- [14] Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 65-70. DOI: 10.1016/ j.cam.2014.01.002.
- [15] Malfliet, W. (1992). Solitary wave solutions of nonlinear wave equations. American Journal of Physics, 60(7), 650-654. DOI: 10.1119/1.17120.
- [16] Balcıa, E. Ozturka, I., & Kartalb, S. (2019). Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative. Chaos, Solitons and Fractals, 123, 43-51. DOI: 10.1016/j.chaos.2019.03.032.
- [17] Zhao, D., & Luo, M. (2017). General conformable fractional derivative and its physical interpretation. Calcolo, 903-917. DOI: 10.1007/978-3-030-56962-4.
- [18] Eltayeb, A., Ahmed, M.A., Abaker, A., & Mohamed, I. (2021). Conformable fractional isothermal gas spheres. New Astronomy, 84, 101511. DOI: 10.1016/j.newast.2020.101511.
- [19] Morales-Delgado, V.F., Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., & Taneco-Hernández, M.A. (2018). Fractional conformable derivatives of Liouville-Caputo type with low-fractionality. Physica A., 503, 424-438. DOI: 10.1016/j.physa.2018.03.018.
- [20] Wazwaz, A.M. (2007). The tanh method for traveling wave solutions of nonlinear equations. Applied Mathematics and Computation, 190(2), 1797-1805.
- [21] El-Wakil, S.A., & Abdou, M.A. (2007). New exact travelling wave solutions using modified extended tanh-function method. Chaos, Solitons & Fractals, 31(4), 840-852.
- [22] Wazwaz, A.M. (2008). The tanh-coth and sine-cosine methods for reliable treatment of the Pochhammer-Chree equations. Applied Mathematics and Computation, 202(1), 333-342.
- [23] Bekir, A. (2008). Application of the tanh method to travelling wave solutions for non-linear equations. Applied Mathematics and Computation, 203(1), 133-143.
- [24] Asokan, R., & Vinodh, D. (2013). The tanh-coth method for soliton and exact solutions of the Sawada-Kotera equation. International Journal of Pure and Applied Mathematics, 117(13), 19-27.
- [25] Kaya, D. (2004). Exact solutions of nonlinear evolution equations by the generalized tanh-function method. Physics Letters A, 340(3-4), 183-188.
- [26] Wazwaz, A. (2004). The tanh method for traveling wave solutions of nonlinear equations. Applied Mathematics and Computation, 154, (3), 713-723.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e90a482a-f152-4016-a53e-593ce1658795
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.