Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Detection and classification of vegetation is a crucial technical task in the management of natural resources since vegetation serves as a foundation for all living things and has a significant impact on climate change such as impacting terrestrial carbon dioxide (CO2). Traditional approaches for acquiring vegetation covers such as field surveys, map interpretation, collateral and data analysis are ineffective as they are time consuming and expensive. In this paper vegetation regions are automatically detected by applying simple but effective vegetation indices Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) on red(R) and near infrared (NIR) bands of Landsat-8 satellite image. Remote sensing technology makes it possible to analyze vegetation cover across wide areas in a cost-effective manner. Using remotely sensed images, the mapping of vegetation requires a number of factors, techniques, and methodologies. The rapid improvement of remote sensing technologies broadens possi-bilities for image sources making remotely sensed images more accessible. The dataset used in this paper is the R and NIR bands of Level-1 Tier 1 Landsat-8 optical remote sensing image acquired on 6th September 2013, is processed and made available to users on 2nd May 2017. The pre-processing involving sub-setting operation is performed using the ERDAS Imagine tool on R and NIR bands of Landsat-8 image. The NDVI and SAVI are utilized to extract vegetation features automatically by using python language. Finally by establishing a threshold, vegetation cover of the research area is detected and then classified.
Czasopismo
Rocznik
Tom
Strony
45--55
Opis fizyczny
Bibliogr. 25 poz., fig.
Twórcy
autor
- Vidya Jyothi Institute of Technology, Department of Computer Science and Engineering, India
Bibliografia
- [1] Abburu, S., & Golla, S. B. (2015). An engineering evaluation on the glimpse of satellite image pre-processing utility tools. Article of Engineering Journal, 19(5), 1–10. https://doi.org/10.4186/ej.2015.19.2.129
- [2] Ahmad, A. M., Minallah, N., Ahmed, N., Ahmad, A. M., & Fazal, N. (2020). Remote sensing based vegetation classification using machine learning algorithms. 2019 International Conference on Advances in the Emerging Computing Technologies (AECT) (pp. 1–6). IEEE. https://doi.org/10.1109/AECT47998.2020.9194217
- [3] Asokan, A., Anitha, J., Ciobanu, M., Gabor, A., Naaji, A., & Hemanth, D. J. (2020). Image processing techniques for analysis of satellite images for historical maps classification – an overview. Appied Sciences, 10(12), 1–21. https://doi.org/10.3390/app10124207
- [4] Bouhennache, R., Bouden, T., & Taleb, A. A. (2014). Change Detection in Urban Land Cover Using Landsat Images Satellites, A Case Study in Algiers Town. 2014 Tenth International Conference on Signal-Image Technology and Internet-Based Systems (pp. 622–628). IEEE. https://doi.org/10.1109/SITIS.2014.57
- [5] Chen, X., Giri, C., & Vogelmann, J. E. (2016). Land-Cover Change Detection. Remote Sensing of Land Use and Land Cover (pp. 152–176). CRC Press. https://doi.org/10.1201/b11964-14
- [6] Dalponte, M., Marzini, S., Solano-Correa, Y. T., Tonon, G., Vescovo, L., & Gianelle, D. (2020). Mapping forest wind throws using high spatial resolution multispectral satellite images. International Journal of Applied Earth Observation Geoinformatics, 93, 102206. https://doi.org/10.1016/j.jag.2020.102206
- [7] Dutta, D., Rahman, A., & Kundu, A. (2015). Growth of Dehradun city: An application of linear spectral unmixing (LSU) technique using multi-temporal landsat satellite data sets. Remote Sensing Applications: Society and Environment, 1, 98–111. https://doi.org/10.1016/j.rsase.2015.07.001
- [8] Fatihaa, B., Abdelkaderb, A., Latifac, H., & Mohamedd, E. (2013). Spatio temporal analysis of vegetation by vegetation indices from multi-dates satellite images: Application to a semi arid area in ALGERIA. TerraGreen 13 International Conference 2013 – Advancements in Renewable Energy and Clean Environment, Elsevier, Energy Procedia, 36, 667–675. https://doi.org/10.1016/j.egypro.2013.07.077
- [9] Gandhi, G. M., Parthiban, S., & Christy, N. T. (2015). Ndvi: Vegetation change detection using remote sensing and gis – A case study of Vellore District. 3rd International Conference on Recent Trends in Computing 2015, Elsevier, Procedia Computer Science, 57, 1199–1210. https://doi.org/10.1016/j.procs.2015.07.415
- [10] He, B., Zhang, H., Feng, S., Liu, X., Zhou, Y., & Guan, Y. (2020). Improving land cover change detection and classification with BRDF correction and spatial feature extraction using Landsat Time Series: A case of urbanization in Tianjin, China. IEEE Journal of Selecteed Topics in Applied Earth Observation. and Remote Sensing (vol 13, pp. 4166–4177). IEEE. https://doi.org/10.1109/JSTARS.2020.3007562
- [11] Jing, X., Wang, J., Huang, W., Liu. L., & Wang, J. (2009). Study on Forest Vegetation Classification Based on Multitemporal Remote Sensing Images. Computer and Computing Technologies in Agriculture II, Volume 1. CCTA 2008. IFIP Advances in Information and Communication Technology (vol 293). Springer. https://doi.org/10.1007/978-1-4419-0209-2_13
- [12] Landsat Missions. (n.d.). Retrieved February 13, 2022 from https://www.usgs.gov/landsat-missions/landsat-collection-2-level-1-data
- [13] Langendoen, D., Navarro, G., Willner, W., Keith, D. A., Liu, C., Guo, K., & Meidinger, D. (2020). Perspectives on Terrestrial Biomes: The International Vegetation Classification. Encyclopedia of the World's Biomes, 2020, 1–15. https://doi.org/10.1016/B978-0-12-409548-9.12417-0
- [14] Li, A., Lei, G., Zhao, W., Nan, X., & Zhang, Z. (2017). Post-earthquake Landslides Mapping from Landsat-8 Data for the 2015 Nepal Earthquake Using a Pixel-Based Change Detection Method. IEEE Journal of Selected Topics in Applied. Earth Observation and Remote Sensing, 10, 1758–1768. https://doi.org/10.1109/JSTARS.2017.2661802
- [15] Omar, M. S., & Kawamukai, H. (2021). Prediction of NDVI using the Holt-Winters model in high and low vegetation regions: A case study of East Africa. Scientific African, 14, e01020. https://doi.org/10.1007/s40808-018-0431-3
- [16] Persson, H. J., Ulander, L. M. H., & Soja, M. J. (2018). Modeling and Detection of Deforestation and Forest Growth in Multitemporal TanDEM-X Data. IEEE Journal of Selected Topic in Appied Earth Observation and Remote sensing, 11, 3548–3563. https://doi.org/10.1109/JSTARS.2018.2851030
- [17] Porikli, F., Bennamoun, M., Khan, S. H., & He, X. (2017). Forest change detection in incomplete satellite images with deep neural networks. IEEE Tranactions on Geoscience and Remote sensing, 52, 5407–5423. https://doi.org/10.1109/TGRS.2017.2707528
- [18] Rhyma, P. P., Norizah, K., Hamdan, O., Faridah-Hanum, I., & Zulfa, A. W. (2019). Integration of normalised different vegetation index and Soil-Adjusted Vegetation Index for mangrove vegetation delineation. Remote Sensing Applications: Society and Environment, 17, 1–14. https://doi.org/10.1016/j.rsase.2019.100280
- [19] Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R., Scambos, T. A., Schaaf, C. B., Schott, J. R., Sheng, Y., Vermote, E. F., Belward, A. S., Bindschadler, R., Cohen, W. B., Gao, F., Hipple, J. D., Hostert, P., Huntington, J., Justice, C. O., Kilic, A., Kovalskyy, V., Lee, Z. P., Lymburner, L., Masek, J. G., McCorkel, J., Shuai, Y., Trezza, R., Vogelmann, J., Wynne, R. H., & Zhu, Z. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172. https://doi.org/10.1016/j.rse.2014.02.001
- [20] Ruiz, L. F. C., Guasselli, L. A., Simioni, J. P. D., Belloli, T. F., & Fernandes, P. C. B. (2021). Object-based Classification of Vegetation species in a subtropical wetland using Sentinel-1 and Sentinel-2A images. Science of Remote Sensing, 3, 1–10. https://doi.org/10.1016/j.srs.2021.100017
- [21] Schmidt, G., Jenkerson, C. B., Masek, J., Vermote, E., & Gao, F. (2013). Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm Description (vi, 9p.). U.S. Geological Survey open-file report, U.S. Geological Survey. https://doi.org/10.3133/ofr20131057
- [22] Sowmya, D. R., Deepa, P., & Venugopal, K. (2017). Remote Sensing Satellite Image Processing Techniques for Image Classification: A Comprehensive Survey. International Journal of Computer Applications, 161, 24–37. https://doi.org/10.5120/ijca2017913306
- [23] Xue, J., & Su, B. (2017). Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Hindawi, Journal of Sensors, 2017, 1353691. https://doi.org/10.1155/2017/1353691
- [24] Yu, M., Xie, Y., & Sha, Z. (2008). Remote sensing imagery in vegetation mapping. Journal of Plant Ecology, 1(1), 9–23. https://doi.org/10.1093/jpe/rtm005
- [25] Zhu, Z., Fu, Y., Woodcock, C. E., Olofsson, P., Vogelmann, J. E., Holden, C., Wang, M., Dai, S., & Yu, Y. (2016). Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014). Remote Sensing of Environment, 185, 243–257.https://doi.org/10.1016/j.rse.2016.03.036
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e907ea59-0797-47f6-ab7d-7c403ea51334