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Abstract. We study the dimension of graphs of the Archimedean solids. For most of these
graphs we find the exact value of their dimension by finding unit-distance embeddings in the
euclidean plane or by proving that such an embedding is not possible.
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1. INTRODUCTION

Throughout this paper, we consider simple connected graphs and their geometric
representation in an Euclidean space: given a graph G and an integer n ≥ 2, let D(G)
be a drawing of G in Rn in such a way that each edge is a linear segment. In particular,
we are interested in the case when all edges of D(G) are of unit length (a unit-distance
representation); note that there always exists the unit-distance representation of G
for n = |V (G)|−1. The smallest n such that there exists unit-distance representation
D(G) of G in Rn is the graph dimension dim(G) of G. If dim(G) = 2, G is called
unit-distance graph.

Note that, in most cases, we assume that the geometric representation D(G) of
a graph G is non-degenerate, that is, two distinct vertices u, v of G correspond to
distinct points U, V of D(G). However, sometimes we will also consider drawings in
which a vertex (a geometric point) corresponds to different vertices of a graph; such
drawings are called degenerate.

The graph dimension was first defined by Erdős, Harary and Tutte in [3]. In the
same paper, they have determined the exact values and upper bounds for dimensions
of graphs of several classes (including complete bipartite graphs, wheels, hypercubes
and graphs with fixed chromatic number or large girth). Generally, the problem of
determining the graph dimension seems to be hard (see the note [2] and the paper
[6] on possible algorithms for producing a unit-distance drawing of a graph) and the
unit-distance representations are difficult to find even for small graphs, see [4] for
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unit-distance drawings of the Heawood graph (which has been conjectured to have
graph dimension at least 3).

On the other hand, certain graphs are linked, in a natural way, with geometric
objects which allow us to determine their graph dimension easily. Important examples
are the graphs of Platonic and Archimedean solids. Based on their definition (see [5]
for a discussion on differences between existing notions of semiregularity of polyhedra),
it follows that all edges of these solids have the same length, hence the dimension of
their graphs is at most 3. It is easy to check that the tetrahedron, octahedron and
icosahedron graphs are not unit-distance; the unit-distance drawing of a cube and a
dodecahedron graph are found in [3] and [7], respectively. The aim of this paper is
to find out which Archimedean solids possess graphs which are unit-distance embed-
dable in the plane: we show that this is the case for prisms, several truncated solids
(truncated tetrahedron, cube, octahedron, dodecahedron, icosahedron and cubocta-
hedron), rhombicuboctahedron and icosidodecahedron, whereas for antiprisms, snub
solids (snub cube and dodecahedron) and cuboctahedron, no unit-distance drawing
in the plane exists. For two remaining Archimedean solids – the rhombicosidodeca-
hedron and truncated icosidodecahedron – the existence of an unit-distance drawing
is open, although, for truncated icosidodecahedron, we were able to find a degenerate
unit-distance drawing in the plane which might be possibly transformed, using the
methods described in Section 3, into a non-degenerate one.

The rest of the paper is devoted to presenting a detailed explanation of approaches
used to construct, for graphs of particular Archimedean solids, their unit-distance
drawings or to prove their nonexistence. According to this, we will divide all
Archimedean solids into four groups:
1. cube-like solids: truncated cube, truncated cuboctahedron, rhombicuboctahedron

and prisms,
2. solids involving a kind of “rotation symmetry”: the icosidodecahedron, truncated

icosahedron and truncated dodecahedron,
3. solids with “bad triangles”: antiprisms, snub cube, snub dodecahedron, cubocta-

hedron,
4. the rest.

2. CUBE-LIKE SOLIDS

The common idea for constructing unit-distance drawings of truncated cube, trun-
cated cuboctahedron, rhombicuboctahedron and prisms in the plane is inspired by
the unit-distance drawing of the cube as presented in [3]. Each of these solids admits
a plane symmetry with respect to a plane that passes through midpoints of selected
edges (see Fig. 1). From this it follows that we can decompose the edge set of each
corresponding graph into three subsets such that two of them induce disjoint sub-
graphs H1, H2 which are isomorphic and the third one induces a matching. First,
we construct a unit-distance drawing D(H1) of H1; then we obtain a unit-distance
drawing of H2 by translating all points of D(H1) by a suitable unit vector (note that
it may be chosen in such a way that the vertices of D(H1) and D(H2) do not overlap).
Finally, to obtain the unit-distance drawing of the considered solid graph, we join the
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pairs of equivalent vertices under this translation by new unit edges (see Fig. 2 for
final unit-distance graphs).

Fig. 1

Fig. 2
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3. SOLIDS WITH ROTATION-SYMMETRIC UD-EMBEDDINGS

This group includes the icosidodecahedron, truncated icosahedron and truncated do-
decahedron. The method of construction of their unit-distance drawings combines the
approach used for the solid graphs in the first group: we find isomorphic subgraphs
on half of the vertices, but their unit-distance drawings are now equivalent under a
certain rotation.

Consider first the truncated icosahedron (see Fig. 3):

Fig. 3

We decompose the edge set of this graph into three subsets, two of them inducing
disjoint isomorphic subgraphsR1, R2 on 30 vertices (R1 has vertex set {vi : i ∈ [1, 30]},
R2 the vertex set {vi : i ∈ [31, 60]}) and the third one being a matching. First, we
find a plane unit-distance drawing of R1. The central 5-face containing vertices v1 to
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v5 is drawn as a regular pentagon. We continue with the 6-face v1v2v7v12v11v6: the
vertex v6 is placed on the axis of the outer angle to ∠v5v1v2 in unit-distance from
v1; similarly, v7 is placed on the axis of the outer angle to ∠v1v2v3 in unit distance
from v2. The image of v1 in axial symmetry with respect to axis v6v7 will be the
location of vertex v11, and, similarly, v12 is the image of v2 under the same symmetry.
An analogous approach is used for the remaining 6-faces around the central 5-face.
Finally, we need to perform the construction for the “peripheral” 5-faces. We explain
this for 5-face v6v11v21v30v20. We only need to place vertices v21 and v30: the vertex
v21 is placed in unit-distance from vertex v11 (in the following, we denote the measure
of angle ∠v6v11v21 as α). We place vertex v30 in a similar way in unit-distance from
v20 (the measure of angle ∠v6v20v30 is denoted β). Now the distance of vertices v21
and v30 can be expressed as a function depending on α and β. We apply an analogous
approach to the remaining “peripheral” 5-faces. While doing this we make sure not
to break the rotational symmetry with respect to the angle of measure 2π

5 with the
center of symmetry located at the center of the regular pentagon v1v2v3v4v5. Now,
having a unit-distance drawing of R1, we create the unit-distance drawing of R2 as
the image of unit-distance drawing of R1 in a rotation through angle of measure π
about the center of the regular pentagon. Note that, at this point, the assignment of
indices to vertices is important (see black and red subgraph in Fig. 4).

Obviously, there exists a rotational symmetry of the obtained partial embedding
about the center of the regular pentagon through the angle of measure 2π

5 . This yields
that all the edges in the set {v22v23, v24v25, v26v27, v28v29, v21v30, v31v32, v33v34, v35v36,
v37v38, v39v40} will be of equal length. For the same reason, also the edges in set
{v21v31, v22v32, v23v33, v24v34, v25v35, v26v36, v27v37, v28v38, v29v39, v30v40} are, in this
partial embedding, of equal length. The lengths of the edges in both sets can be
expressed as functions of α and β in the following way (we assume both equal 1):
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We need to prove that there exists a solution [α0, β0] of the above nonlinear system.
To show this, we use the implicit function theorem to express α as a continuous
function f of β ∈ I0 = (1.11, 1.12) from the first equation and β as a continuous
function g of α ∈ I1 = (1.66, 1.67) from the second equation. As f(I0) ⊂ I1 and
g(I1) ⊂ I0 and both f and g are continuous, there exists a point [α0, β0] where
β0 = g(α0) and α0 = f(β0). For these values, both edges v26v27 and v27v37 are of
unit length, thus yielding a unit-distance drawing of the whole graph. We used the
computer algebra system Maple for determining a numerical approximation of the
solution, obtaining α0

.
= 1.630 067 2 and β0

.
= 1.140 945 5.
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Fig. 4

The other constructions for the solids in this group are similar – all of them are
based on rotational symmetry. Sometimes it may be necessary to alter some steps, as
the result may be degenerate if unaltered. We usually have to find solutions for two
implicit functions, in other cases it may be sufficient to deal with a single function.

Let us continue with the graph of the icosidodecahedron (see Fig. 5).
We construct the drawing in such a way that the whole embedding possesses a

rotational symmetry through an angle of measure 2π
5 about the point (0, 0) in a fixed

Cartesian coordinate system. We start with embedding the 5-face v1v2v3v4v5 as a
regular pentagon centered at (0, 0). There are two possible points we could place
vertex v6 (as it forms a 3-face with vertices v1 and v2), but we choose its location
outside the central pentagon. Analogously, we place vertices v7, . . . , v10. To place
vertices v11, . . . , v20, denote the measure of ∠v1v6v11 as α and place vertices v13,
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Fig. 5

v15, v17 and v19 so that |∠v2v7v13| = |∠v3v8v15| = |∠v4v9v17| = |∠v5v10v19| = α.
Now there are two possible locations for the vertex v12; both are equally admissible,
it is just important to choose the location of vertices v14, v16, v18 and v20 accordingly
(with respect to vertices v13, v15, v17 and v19 respectively). Now we can express the
positions of vertices v11, . . . , v20 as functions of α. Except for edges v12v13, v14v15,
v16v17, v18v19 and v11v20, all edges constructed so far are of unit length. Because of
the rotational symmetry preserved by this construction, edges v12v13, . . . , v11v20 are
of equal length, so it suffices to find an embedding where one of these edges is of unit
length. Depending on how we choose the locations of vertices v1 to v20, the length of
such an edge can be expressed as

h(α) =
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It is easy to show that there exists a real number α0 such that h(α0) = 1 (using
Maple software, we found α0

.
= 0.554 390 551 5).

The last thing we need to do is to place vertices v21 to v30. Place vertex v21 so that
it is the image of vertex v10 in axial symmetry with the axis passing through vertex
v20 and point (0, 0). Place vertices v22 to v25 analogously (v22 being the image of v6
with axis (0, 0) and v12 and so on). The position of vertices v26 to v30 is determined by
the position of vertices v21 to v25 (we place them on the cycle that contains vertices
v1 to v5). We illustrate the unit-distance embedding of this graph by Figure 6.

Fig. 6

We conclude this section with describing the construction of a unit-distance em-
bedding of the graph of the truncated dodecahedron (see Fig. 7).

We start by embedding the subgraph induced on vertices v1 to v30; denote this



On the dimension of Archimedean solids 131

Fig. 7

subgraph H1. Again, we preserve a certain rotational symmetry (the rotation through
angle of measure 2π

5 ). First we draw the central 10-face v1 . . . v10 as a regular dec-
ahedron (denote its center as S). There are two possible positions where to place
vertex v11 (they are determined by the position of vertices v1 and v10); we choose the
position outside the decahedron. Analogously, we place vertices v12 to v15. We place
vertex v16 on the line passing through S and v11, in unit distance from point v11 in
such a way that |S, v16| > |S, v11|. Repeat an analogous placement for vertices v17 to
v20. Denote the measure of angle ∠v11v16v21 as α and place vertices v23, v25, v27 and
v29 so that |∠v12v17v23| = |∠v13v18v25| = |∠v14v19v27| = |∠v15v20v29| = α, in such a
way, that the image of vertices v21, v23, v25, v27 and v29 under the rotation through
an angle of measure 2π

5 lies in the set {v21, v23, v25, v27, v29}. There are two possible
positions for vertex v22, both equally admissible; it is important just to pick the loca-
tion of vertices v24, v26, v28 and v30 analogously (with respect to their neighbours and
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rotational symmetry). The embedding constructed so far has a rotational symmetry
through an angle of measure 2π

5 about S (see Fig. 8).

Fig. 8

We construct subgraph H2 induced by vertices v31 to v60, which is isomorphic
to H1, using the same construction, but we replace unknown α by a new unknown
β, which can differ from α. The next step is to join the two embeddings into one,
usually rotating one through an angle of measure π about the center of symmetry (in
this case point S). Note, that if subgraph H2 is rotated through the angle π about
S, the obtained embedding would be degenerate, with the vertices of the central
regular decahedra of both subgraphs being identified. So instead we rotate the partial
embedding ofH2 by an angle of measure π+ω, where ω = kπ

180 for some k ∈ [1, 18]. The
position of all vertices can now be expressed as a function of α, β and the parameter
k. The length of the missing edges can be expressed as:
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(because of the rotational symmetry, we only need to

express the length of two edges, all other missing edges will be of the same length).
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Analogously as for the truncated icosahedron, it can be shown, using the implicit
function theorem, that, for a fixed k, this system of equations will have a real-valued
solution. For k = 9 we found an approximation of a solution using Maple; α0

.
=

5.852 028 177 and β0
.
= −7.571 555 037. The unit-distance embedding is illustrated by

Figure 9.

Fig. 9

4. SOLIDS WITH “BAD TRIANGLES”

The proofs of non-existence of a unit-distance drawing of graphs of snub solids and
antiprisms are based on a simple counting argument which is illustrated for the snub
cube graph: assuming that there exists its unit-distance drawing D, take a 4-cycle C
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corresponding to a 4-face of the snub cube. Note that C is a rhombus and each 3-cycle
of D is an equilateral triangle. Since every vertex x of C belongs to four 3-cycles whose
edges do not cross, the angle of two sides of C incident with x is 2π

3 . Hence, the sum
of inner angles of C is 8π

3 , a contradiction.
The proof for the snub dodecahedron is analogous. The core idea of the proof for

the antiprisms is that, in their unit-distance drawings, all 3-cycles necessarily form a
straight belt.

The nonexistence of a unit-distance drawing for the cuboctahedron graph (see
Fig. 10) is proved by contradiction: consider a 4-cycle v1v2v3v4 of such a drawing
(which forms a rhombus, see Fig. 11) and let µ be its inner angle at v3; note that,
for fixed v3 and v4, the coordinates of v1 and v2 can be expressed as a function of µ.
The vertex v5 lies on 3-cycle v1v2v5, so there are just two possible positions for its
location; denote them v5,1 and v5,2. The similar holds for vertices v6, v7 and v8. As v9
lies on the 4-cycle v1v5v9v8, its coordinates are uniquely determined by the positions
of v1, v5, v8. Each pair (v5,i, v8,j), i, j ∈ [1, 2] determines the unique position for vertex
v9, so there are four different possibilities v9,k, k ∈ [1, 4]. The same applies for vertices
v10 (determined by v5 and v6), v11 (v6 and v7) and v12 (v7 and v8). The interesting
thing is that the positions v9,k, k ∈ [1, 4] have the same coordinates (expressed as
a function of µ) as the positions v10,k, v11,k and v12,k, k ∈ [1, 4]. So we have four
positions for four vertices and we want to place all vertices into different places so we
have to use all four positions. It is simple to calculate the distances between these
positions and to check that four of the distances are equal to

√
3. But as there are four

edges (namely, v9v10, v10v11, v11v12, v9v12) between the vertices in these positions,
at most two of them can be of unit length. However, this is a contradiction with the
assumption of the existence of a unit-distance cuboctahedron drawing in the plane.

Fig. 10 Fig. 11



On the dimension of Archimedean solids 135

5. THE REST

This group contains the truncated tetrahedron and the truncated octahedron (see
Fig. 12 and 14). As there is no common approach, we deal separately with each of
them.

Fig. 12 Fig. 13

The construction of a unit-distance drawing of truncated tetrahedron graph is
illustrated on Figure 13. After fixing the equilateral triangle formed by v1, v2 and
v3, we choose the position of vertex v4 in such a way that the line segment v1v4
lies on the axis of the outer angle at vertex v1; the vertices v5 and v6 are placed
analogously. Let µ be the measure of ∠v1v4v7. Now, the position of vertex v7 can be
expressed as a function of µ. To keep a rotational symmetry in the construction, the
measure of angles ∠v2v5v8 and ∠v3v6v9 is also µ. Now we just have to express the
positions of vertices v10, v11 and v12 as functions of µ; this is possible because each
of them lies on an equilateral triangle. We have to note that for the simplicity of the
construction, it is essential to keep the rotational symmetry at this point (we have
two possible orientations for each of the triangles, so we choose one orientation for the
first triangle and then choose the orientation of the remaining triangles accordingly).
The symmetry ensures that the lengths of line segments v7v11, v8v12 and v9v10 are
equal. The length of v9v10 can be expressed as
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The unit-distance drawing for truncated octahedron graph is illustrated by Fig-
ure 15 (basically, it comes from certain plane projection of this solid); the coordinates
of its vertices are listed in Table 1.

Fig. 14 Fig. 15

Table 1

Vertex x− coordinate y − coordinate Vertex x− coordinate y − coordinate
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√
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√
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6. OPEN PROBLEMS

As we stated at the beginning, our goal was to find the dimension of all the graphs
of Archimedean solids. We were able to fulfill this to a good extend as we found
the dimensions for all Archimedean solids with the exception of the rhombicosido-
decahedron and the truncated icosidodecahedron. Nevertheless, we conjecture that
their dimension is 2. This conjecture is supported partially by the fact that, for the
truncated icosidodecahedron, we were able to find a degenerate unit-distance drawing
(see Fig. 16); however, we have not managed to transform it to an non-degenerate
unit-distance drawing using a kind of particular rotation symmetry as described in
Section 3. If two vertices are identified, we use a double index on the vertex represent-
ing them, the lower left index being the index of one and the lower right index being
the index of the other identified vertex (for example, vertex 62v41 represents vertices
v62 and v41). Note also that, in this drawing, several edges of the original truncated
icosidodecahedron graph are represented by the same line segment, for example, two
edges which are incident with the vertex v61.

Fig. 16
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