PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Practical aspects of design and testing unmanned aerial vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A design of an unmanned aerial vehicle (UAV) construction, intended for autonomous flights in a group, was presented in this article. The design assumptions, practical implementation and results of the experiments were given. Some of the frame parts were made using 3D printing technology. It not only reduces the costs but also allows for better fitting of the covers to the electronics, which additional-ly protects them against shocks and dirt. The most difficult task was to develop the proper navigation system. Owing to high costs of preci-sion positioning systems, common global positioning system (GPS) receivers were used. Their disadvantage is the floating position error. The original software was also described. It controls the device, allows performing autonomous flight along a pre-determined route, anal-yses all parameters of the drone and sends them in a real time to the operator. The tests of the system were carried out and presented in the article, as well.
Rocznik
Strony
50--58
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  • Faculty of Electrical Engineering, Automatic Control and Informatics Department of Electrical Engineering and Mechatronics, Opole University of Technology, ul. Prószkowska 76, 45-758 Opole, Poland
  • Faculty of Electrical Engineering, Automatic Control and Informatics Department of Electrical Engineering and Mechatronics, Opole University of Technology, ul. Prószkowska 76, 45-758 Opole, Poland
Bibliografia
  • 1. Aghaeeyan A,, Abdollahi F., Talebi H.A., (2015), UAV–UGVs cooperation: With a moving center based trajectory, Robotics and Autonomous Systems, 63, Part 1,1-9.
  • 2. Bonali F.L., Tibaldi A., Marchese F., Fallati L., Russo E., Corselli C., Savini A., (2019), UAV-based surveying in volcano-tectonics: An example from the Iceland rift, Journal of Structural Geology, 121, 46-64.
  • 3. Cai G., Feng L., Chen B., Lee T.H., (2008), Systematic design methodology and construction of UAV helicopters, Mechatronics 18, 545–558.
  • 4. Cechowicz R., (2017), Bias drift estimation for mems gyroscope used in inertial navigation, Acta Mechanica et Automatica, 11(2), 104-110.
  • 5. Cetinsoy E., Dikyar S., Hancer C., Oner K.T., Sirimoglu E., Unel M., Aksit M.F., (2012), Design and construction of a novel quad tilt-wing UAV, Mechatronics 22, 723–745.
  • 6. Cho A., Kang Y.S., Park B., Yoo Ch.S., Koo S.O., (2011), Altitude Integration of Radar Altimeter and GPS/INS for Automatic Takeoff and Landing of a UAV, 2011 11th International Conference on Con-trol, Automation and Systems, Gyeonggi-do, Korea, 1429-1432.
  • 7. Choudhary G., Sharma V., You I., (2019), Sustainable and secure trajectories for the military Internet of Drones (IoD) through an effi-cient Medium Access Control (MAC) protocol, Computers & Electrical Engineering, 74, 59-73.
  • 8. Deng H., Arif U., Fu Q., Xi Z., Quan Q., Cai K., (2018), Visual–inertial estimation of velocity for multicopters based on vision motion constraint, Robotics and Autonomous Systems, 107, 262-279.
  • 9. Ebeid E., Skriver M., Husum K., Jensen K., Pagh U., (2018), A Survey of Open-Source UAV Flight Controllers and Flight Simulators, Microprocessors and Microsystems, 61, 11-20.
  • 10. Ferrarese G., (2017), Bandwidth Assessment for MultiRotor UAVs, Acta Mechanica et Automatica, 11(2), 150-153.
  • 11. Fujimori A., Ukigai Y., Santoki A., Oh-hara S., (2018), Autonomous flight control system of quadrotor and its application to formation con-trol with mobile robot. IFAC-PapersOnLine, 51(22), 343-347.
  • 12. Gómez A., Rodríguez A., Sanchez C., Luis G., Hernández C., Cuerno R., (2019), Remotely Piloted Aircraft Systems conceptual design methodology based on factor analysis, Aerospace Science and Technology, 90, 368-387.
  • 13. https://www.youtube.com/watch?v=4rh5Z1fHzq4&feature=youtu.be (access on 23.12.2019).
  • 14. https://www.youtube.com/watch?v=4WOrWoNT-bM&feature=youtu.be (access on 23.12.2019).
  • 15. https://www.youtube.com/watch?v=eJ9QhFdsagQ&feature=youtu.be (access on 23.12.2019).
  • 16. https://www.youtube.com/watch?v=tq4ihl6fRDg&feature=youtu.be (access on 23.12.2019).
  • 17. Huang L., Song J., Zhang Ch., Cai G., (2018), Design and perfor-mance analysis of landmark-based INS/Vision Navigation System for UAV, Optik, 172, 484-493.
  • 18. Khamseh H.B., Janabi-Sharifi F., Abdessameud A., (2018), Aerial manipulation—A literature survey, Robotics and Autonomous Sys-tems, 107, 221-235.
  • 19. Kopichev M., Ignatiev K., Putov A., (2013), Autonomous Control and Stabilization System for Unmanned Aerial Vehicles, IFAC Pro-ceedings Volumes, 46(30), 240-243.
  • 20. Kownacki C., (2016), Multi-UAV Flight on the Basis of Virtual Struc-ture Combined with Behavioral Approach, Acta Mechanica et Auto-matica, 10(2), 92-99.
  • 21. Luo Q., Yang X., Zhou Y., (2019). Nature-inspired approach: An enhanced moth swarm algorithm for global optimization, Mathemat-ics and Computers in Simulation, 159, 57-92.
  • 22. María de Miguel Molina, Virginia Santamarina Campos, M. Ánge-les Carabal Montagud, Blanca de Miguel Molina, (2018), Ethics for civil indoor drones: A qualitative analysis, International Journal of Micro Air Vehicles, 10(4), 340–351.
  • 23. Nallapaneni Manoj Kumara, Sudhakar K., Samykano M., Jay-aseelan V., (2018), On the technologies empowering drones for in-telligent monitoring of solar photovoltaic power plants, International Conference on Robotics and Smart Manufacturing (RoSMa2018), Procedia Computer Science, 133, 585–593.
  • 24. Olivas F., Valdez F., Castillo O., González C.I., Martinez G.E., Melin P., (2017), Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems, Appl. Soft Comput, 74-87.
  • 25. Puchała K., Szymczyk E., Jachimowicz J., (2015), FEM design of composite – metal joint for bearing failure analysis, Przegląd Mechaniczny, 33 – 41.
  • 26. Pulvera A., Weib R., (2018), Optimizing the spatial location of medi-cal drones, Applied Geography, 90, 9–16.
  • 27. Roseneia Rodrigues Santos de Melo, Dayana B.C., Juliana Sampaio Álvares, Irizarry J., (2017), Applicability of unmanned aer-ial system (UAS) for safety inspection on construction sites, Safety Science, 98, 174-185.
  • 28. Socha K., Dorigo M., (2008), Ant colony optimization for continuous domains, European Journal of Operational Research, 1155-1173.
  • 29. Souza D., Pinto V., Nascimento L., Torres J., Gomes J., Sa-Junior J., Sa-Junior J., Almeida R., (2016), Battery Discharge fore-cast applied in Unmanned Aerial Vehicle, Przegląd Elektrotechniczny 02/2016, 185-192.
  • 30. Stančić R. Graovac S., (2010), The integration of strap-down INS and GPS based on adaptive error damping, Robotics and Autono-mous Systems, 58(10), 1117-1129.
  • 31. Sun J., Li B., Wen Ch.Y., Chen Ch.K., (2018), Design and imple-mentation of a real-time hardware-in-the-loop testing platform for a dual-rotor tail-sitter unmanned aerial vehicle, Mechatronics 56, 1–15.
  • 32. Szywalski P., (2017), Design of the autonomous flight algorithm for Unmanned Aerial System, Opole, 4-61
  • 33. Szywalski P., Waindok A., (2018), Analysis of the quadrocopter class 130 frame deformation made with using 3D printing technology, Przegląd Mechaniczny, 39-44.
  • 34. Szywalski P., Wajnert D., (2018), Possibility Analysis of the Loca-tion Measurement by Using the GPS Receiver and Barometric Altim-eter, Pomiary Automatyka Robotyka, 33-39.
  • 35. Zhu W., Dong Y., Wang G., Qiao Z., Gao Z., (2013), High-precision Barometric Altitude Measurement Method and Technology, 2013 IEEE International Conference on Information and Automation (ICIA), 430-435.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e904d0f0-8882-4dbb-9f38-eef6a550fb3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.