PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of the disjunctive geological fault influence on the exploitation wells stability during underground coal gasification

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of computer modeling of stress-deformed state of rock massif with the use of software FLAC 5.00 in zones of geological fault influence with amplitude that does not exceed 3 m are presented in the article. According to the results of the modeling, the dependences of vertical stress change in handing wall and foot wall of geological fault with variable fault plane amplitudes and contour well deformation have been obtained. Using the interpolation data method, 3-D grid visualization of vertical stress in space is got. The analysis of modeling results on full movement vectors is also presented. Results of previously conducted analytical calculations are compared with received data. Conclusions regarding the implementation of the offered method are made on the basis of undertaken investigations. The obtained results with sufficient accuracy in practical application can be used to determine the location of underground gas generator wells. Also these investigations will give the opportunity to maintain the necessary exploitation wells crosscut. Besides, it will allow consume coal reserves in the faulting zones in order to obtain power and chemical generator gas, chemicals and heat.
Słowa kluczowe
Rocznik
Strony
1183--1197
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
  • Underground Mining Department, National Mining University, 19 Yavornytskoho Ave., 49005 Dnipro, Ukraine
  • Underground Mining Department, National Mining University, 19 Yavornytskoho Ave., 49005 Dnipro, Ukraine
autor
  • Underground Mining Department, National Mining University, 19 Yavornytskoho Ave., 49005 Dnipro, Ukraine
  • Underground Mining Department, National Mining University, 19 Yavornytskoho Ave., 49005 Dnipro, Ukraine
  • Department of Automation, Electrical Engineering and Computer-integrated Technologies, National University of Water Management and Nature Resources Use, 11 Soborna St., 33028 Rivne, Ukraine
  • Department of Development of Deposits and Mining, National University of Water Management and Nature Resources Use, 11 Soborna St., Rivne 33028, Ukraine
Bibliografia
  • [1] M. Wiatowski, K. Kapusta, J. Świądrowski, K. Cybulski, M. Ludwik-Pardała, J. Grabowski, K. Stańczyk, Technological aspects of underground coal gasification in the experimental ‘‘Barbara’’ mine, Fuel 159 (2015) 454–462. , http://dx.doi.org/10.1016/j.fuel.2015.07.001.
  • [2] P. Aghalayam, Underground coal gasification: a clean coal technology, in: Handbook of Combustion, 2010, http://dx.doi.org/10.1002/9783527628148.hoc082.
  • [3] A.W. Bhutto, A.A. Bazmi, G. Zahedi, Underground coal gasification: from fundamentals to applications, Prog. Energy Combust. Sci. 39 (1) (2013) 189–214. , http://dx.doi.org/10.1016/j.pecs.2012.09.004.
  • [4] G. Gayko, V. Kasyanov, Utilizing thermal power potential of coal by underground burning (gasification) of thin coal layers, in: Technical, Technological and Economical Aspects of Thin-Seams Coal Mining, International Mining Forum, 2007, 2007, 97–101. , http://dx.doi.org/10.1201/noe0415436700. ch12.
  • [5] E. Shafirovich, A. Varma, Underground coal gasification: a brief review of current status, Ind. Eng. Chem. Res. 48 (17)(2009) 7865–7875. , http://dx.doi.org/10.1021/ie801569r.
  • [6] O. Kuz'menko, M. Petlyovanyy, M. Stupnik, The influence of fine particles of binding materials on the strength properties of hardening backfill, Min. Miner. Depos. (2013) 45–48. , http://dx.doi.org/10.1201/b16354-10.
  • [7] K.K. Kozel, An influence of disjunctive fault plane on mechanized complex productivity, Coal Ukraine (4) (1990) 16–17 (in Russian).
  • [8] M.I. Struiev, V.I. Isakov, V.B. Shpakova, Lviv-Volyn coal basin, in: Geological and Industrial Essay, 1994, . p. 272.
  • [9] V. Sotskov, I. Saleev, Investigation of the rock massif stress strain state in conditions of the drainage drift overworking, Min. Miner. Depos. (2013) 197–201. , http://dx.doi.org/10.1201/b16354-36.
  • [10] J.T. Katsikadelis, The Boundary Element Method for Engineers and Scientists, 2016, http://dx.doi.org/10.1016/c2014-0-01297-x.
  • [11] M. Barabash, State analysis of overworked and underworked parting between contiguous seams and during their simultaneous top-down mining, Min. Miner. Depos. 10 (2) (2016) 34–39. , http://dx.doi.org/10.15407/mining10.02.034.
  • [12] X. Qiu, DEM simulations in mining and mineral processing, in: Proceedings of the 7th International Conference on Discrete Element Methods, 2016, 37–43. , http://dx.doi.org/10.1007/978-981-10-1926-5_5.
  • [13] L. Jing, O. Stephansson, Fundamentals of discrete element methods for rock engineering – theory and applications (2007), Dev. Geotechn. Eng. (2007), http://dx.doi.org/10.1016/s0165-1250(07)x8500-6.
  • [14] B. Vazhbakht, A.M. Zsaki, A finite element mesh optimization method incorporating geologic features for stress analysis of underground excavations, Int. J. Rock Mech. Min. Sci. 59 (2013) 111–119. , http://dx.doi.org/10.1016/j.ijrmms.2012.12. 016.
  • [15] O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, 2013, http://dx.doi.org/10.1016/c2009-0-24909-9v.
  • [16] V. Fomychov, V. Pochepov, V. Lapko, L. Fomychova, Development and analysis of computational model of geomechanical system “layered massif – working support.”, Min. Miner. Depos. 10 (2) (2016) 25–33. , http://dx.doi.org/10.15407/mining10.02.025.
  • [17] G. Dhatt, G. Touzot, E. Lefrançois, Finite Element Method, 2012, http://dx.doi.org/10.1002/9781118569764.
  • [18] F.H. Kulhawy, Analysis of underground openings in rock by finite element methods, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 11 (10) (1974) 207, http://dx.doi.org/10.1016/0148-9062 (74)91219-4.
  • [19] W. Zhou, W. Yuan, X. Chang, Combined finite-discrete element method modeling of rock failure problems, in: Proceedings of the 7th International Conference on Discrete Element Methods, 2016, 301–309. , http://dx.doi.org/10.1007/978-981-10-1926-5_33.
  • [20] A. Munjiza, The Combined Finite-Discrete Element Method, 2004, http://dx.doi.org/10.1002/0470020180.
  • [21] E. Eberhardt, The Hoek–Brown failure criterion, Rock Mech. Rock Eng. 45 (6) (2012) 981–988. , http://dx.doi.org/10.1007/s00603-012-0276-4.
  • [22] X. Shi, X. Yang, Y. Meng, G. Li, Modified Hoek–Brown failure criterion for anisotropic rocks, Environ. Earth Sci. 75 (11) (2016), http://dx.doi.org/10.1007/s12665-016-5810-3.
  • [23] R. Dychkovskyi, V. Falshtynskyi, V. Lozynskyi, P. Saik, Analytical investigations of massive stress in the zone of disjunctive fault influence, Min. Miner. Depos. 8 (3) (2014) 361–365. , http://dx.doi.org/10.15407/mining08.03.361.
  • [24] V. Bondarenko, M. Hardygora, H. Symanovych, V. Sotskov, V. Snihur, Numerical methods of geomechanics tasks solution during coal deposits' development, Min. Miner. Depos. 10 (3) (2016) 1–12. , http://dx.doi.org/10.15407/mining10.03.001.
  • [25] E. Hoek, Practical Rock Engineering, Consulting Engineer Inc, 2006. p. 237.
  • [26] P.A. Cundall, R.D. Hart, Numerical modelling of discontinua, Eng. Comput. 9 (2) (1992) 101–113. , http://dx.doi.org/10.1108/eb023851.
  • [27] Fast Largangian Analysis of Continua, Online Manual Table of Contents, Itasca Consulting Group, Inc., April 2005 www.itascacg.com.
  • [28] V.H. Lozynskyi, R.O. Dychkovskyi, V.S. Falshtynskyi, P.B. Saik, Revisiting possibility to cross the disjunctive geological faults by underground gasifier, Nauk. Visnyk Natsional. Hirnych. Univ. 4 (2015) 22–27.
  • [29] V.G. Lozynskyi, R.O. Dychkovskyi, V.S. Falshtynskyi, P.B. Saik, Y.Z. Malanchuk, Experimental study of the influence of crossing the disjunctive geological fault on thermal regime of underground gasifier, Nauk. Visnyk Natsional. Hirnych. Univ. 5 (2015) 21–29.
  • [30] V. Falshtynskyy, R. Dychkovskyy, V. Lozynskyy, P. Saik, New method for justification the technological parameters of coalgasification in the test setting, Sch. Undergr. Min. 2012 (2012) 201–208. , http://dx.doi.org/10.1201/b13157-35.
  • [31] M. Abzalov, Methods of the linear geostatistics (Kriging), Appl. Min. Geol. (2016) 263–286. , http://dx.doi.org/10.1007/978-3-319-39264-6_19.
  • [32] V. Busylo, T. Savelieva, V. Serdyuk, V. Saveliev, Yu Demchenko, Study of massif stress–strain state while mining the series of flat strata, Min. Miner. Depos. 11 (1) (2017) 80–86. , http://dx.doi.org/10.15407/mining11.01.080.
  • [33] N.D. Pankratova, G.I. Gayko, V.G. Kravets, I.A. Savchenko, Problems of megapolises underground space system planning, J. Autom. Inform. Sci. 48 (4) (2016) 32–38. , http://dx.doi.org/10.1615/jautomatinfscien.v48.i4.40.
  • [34] I. Sakhno, O. Isayenkov, S. Rodzin, Local reinforcing of footing supported in the destroyed rock massif, Min. Miner. Depos. 11 (1) (2017) 9–18. , http://dx.doi.org/10.15407/mining10.03.001.
  • [35] M. Petlovanyi, Influence of configuration chambers on the formation of stress in multi-modulus mass, Min. Miner. Depos. 10 (2) (2016) 48–54. , http://dx.doi.org/10.15407/mining10.02.048.
  • [36] V. Falshtyns'kyy, R. Dychkovs'kyy, V. Lozyns'kyy, P. Saik, Justification of the gasification channel length in underground gas generator, Min. Miner. Depos. (2013) 125–132. , http://dx.doi.org/10.1201/b16354-23.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e90059fe-cc2d-4987-84a7-48e7a071fc58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.