PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of Dynamic Interactions in the Fuel Rail for the Aircraft Diesel Engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper reports a computer model for simulating dynamic responses in fuel rail of aircraft diesel engine. The fuel system was designed for use in a two-stroke compression-ignition engine with opposite pistons. The methodology of building a fuel system model in the AVL Hydsim program and the results of simulation studies were presented. Determination of dynamic phenomena in the fuel rail required the construction of a model of the entire supply system. It is a common rail system with a three-section positive displacement pump and electromagnetic fuel injectors. The system is also equipped with a PID regulator to maintain the present pressure in the fuel rail. For the purposes of the research, two structures of the fuel rail were developed. They differ in dimensions, spacing of the outlet ports and location of the high-pressure connection. The research allowed determining the interactions between the geometry of the fuel rail and the supply method with the fuel pressure and injector mass flow rate. This will optimise the design of the fuel rail for the three-cylinder engine power supply system.
Twórcy
  • Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. AVL BOOST Hydsim Primer (2013)
  • 2. AVL BOOST Hydsim User Guide (2013)
  • 3. Balluchi A., Bicchi A. Mazzi E., Sangiovanni-Vincentelli A. L., Serra G. Hybrid Multi–rate Control of the Common–Rail. Proceedings of the European Control Conference, 2007.
  • 4. Balluchi A., Bicchi A., Mazzi E., Vincentelli A.S. Serra, G. Hybrid modeling and control of the common rail injection system. International Journal of Control, 2006.
  • 5. Catalano A., Tondolo V.A., Dadone A. Dynamic rise of pressure in the common-rail fuel injection system. SAE Paper No. 2002–01–0210.
  • 6. Czyż, Z., Siadkowska, K., Sochaczewski, R. CFD Analysis of Charge Exchange in an Aircraft Opposed-Piston Diesel Engine. MATEC Web of Conferences, 252, 04002, 2019.
  • 7. Gauthier C., Sename O., Dugard L., Meissonnier G. Modelling of a diesel engine common rail injection system. In: 16th IFAC World Congress, Prague, CZ, IFAC, 2005.
  • 8. Reis H., Reis C., Sharip A., Reis W., Zhao Y., Sinclair R., Beeson L. Diesel exhaust exposure, its multi-system effects, and the effect of new technology diesel exhaust. Environment International 114, 2018, 252–265.
  • 9. He Z.X. Numerical simulation of transient flow in high pressure common rail injector. Journal of Jiangsu University, 2007, 28(2), 142–146.
  • 10. Hu Q., Wu S. F. Modelling of dynamic responses of an automotive fuel rail system, Part I: Injector. Journal of Sound and Vibration, 245(5), 801–814.
  • 11. Jiping L., Shuiyuan T., Yong Z. Simulation of Assembly Tolerance and Characteristics of High Pressure Common Rail Injector. International Journal of Computational Intelligence Systems, 4(6), 2011, 1282–1289.
  • 12. Kamil M., Rahman M. M., Bakar R. A. Modeling of Common Rail Fuel Injection System of Four Cylinder Hydrogen Fueled Engine. Journal of Engineering and Technology, 1(1), 2010.
  • 13. Kalke J., Opaliński M., Szczeciński M. Opposedpiston engines: the future of internal combustion engines? PhD Interdisciplinary Journal, No. 1, 2014, 175–184.
  • 14. Liu B. B, Li G. X. Existing status and trend of high pressure common rail injection system in diesel engine. Internal Combustion Engines, 2006, 22(2), 1–3.
  • 15. Ma FK., Zhao CL., Zhang FJ., Zhao ZF., Zhang ZY., Xie ZY., Wang H. An Experimental Investigation on the Combustion and Heat Release Characteristics of an Opposed-Piston Folded-Cranktrain Diesel Engine. ENERGIES, 8(7), 6365–6381.
  • 16. Magryta P; Geca M. FEM analysis of piston for aircraft two stroke diesel engine. MATEC Web of Conferences, 252, Article Number: 07004, 2018.
  • 17. Payri F., Lujan J. M., Guardiola C., Rizzoni G. Injection diagnosis through common-rail pressure measurement. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006, 220, 347.
  • 18. Pirault JP.; Flint M. Opposed Piston Engines: Evolution, Use, and Future Applications. SAE INTERNATIONAL, 2010.
  • 19. Pogulyaev Y.D., Baitimerov R.M., Rozhdestvenskii Y.V. Detailed dynamic modeling of common rail piezo injector. Procedia Engineering, 129, 2015, 93–98.
  • 20. Sanli A., Yılmaz I. T., Gümüş M. Assessment of combustion and exhaust emissions in a commonrail diesel engine fueled with methane and hydrogen/methane mixtures under different compression ratio. International Journal of Hydrogen Energy, 45(4), 2020, 3263–3283
  • 21. Sochaczewski, R. Modeling fuel injector twostroke diesel engine. Combustion Engines. 170(3), 2017, 147–153.
  • 22. Sochaczewski R., Szlachetka M. Numerical analysis of a fuel pump for an aircraft diesel engine. MATEC Web of Conferences 252, 01003, 2019.
  • 23. Yilmaz I.T., Gumus M. Effects of hydrogen addition to the intake air on performance and emissions of common rail diesel engine. Energy, 142, 2018, 1104–1113.
  • 24. Xu L., Bai X-S., Jia M., Qian Y., Qiao X., Lu X. Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system Applied Energy, 230, 2018, 287–304.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8fa7d3b-573d-4219-818f-e98d62e00fd2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.