Identyfikatory
Warianty tytułu
Analiza punktowej zupełności i punktowej degeneracji deskryptowych obwodów elektrycznych przy użyciu odwrotności Drazina
Języki publikacji
Abstrakty
It is shown that every descriptor electrical circuit is a linear system with regular pencil. The pointwise completeness and pointwise generacy of the descriptor electrical circuits is analyzed by the use of Drazin inverse of matrices. Conditions for the pointwise completeness and pointwise generacy of the descriptor electrical circuits are established and illustrated by an example.
Pokazano,że każdy deskryptowy obwód elektryczny jest układem o pęku regularnym. Puktowa zupełność i punktowa degeneracja zostały przebadane przy użyciu odwrotności Drazina macierzy. Podano warunki punktowej zupełności i punktowej degeneracji deskryptowych obwodów elektrycznych. Rozważania zilustrowano przykładem de skryptowego obwodu elektrycznego.
Wydawca
Czasopismo
Rocznik
Tom
Strony
10--14
Opis fizyczny
Bibliogr. 28 poz., schem.
Twórcy
autor
- Politechnika Białostocka, Wydział Elektryczny, ul. Wiejska 45D, 15-351 Białystok
Bibliografia
- [1] Bru, R., Coll, C., Romero-Vivo S. and Sanchez, E. (2003), “Some problems about structural properties of positive descriptor systems”, Lecture Notes in Control and Inform. Sci., vol. 294, Springer, Berlin, 233-240.
- [2] Bru, R., Coll, C. and Sanchez, E. (2002), “Structural properties of positive linear time-invariant difference-algebraic equations”, Linear Algebra Appl., vol. 349, 1-10.
- [3] Busłowicz M., Pointwise completeness and pointwise degeneracy of linear discrete-time systems of fractional order. Zesz. Nauk. Pol. Śląskiej, Automatyka, No. 151, 2008, pp. 19-24 (in Polish).
- [4] Busłowicz M., Kociszewski R., Trzasko W., Pointwise completeness and pointwise degeneracy of positive discretetime systems with delays. Zesz. Nauk. Pol. Śląskiej, Automatyka, No. 145, 2006, pp. 55-56 (in Polish).
- [5] Choundhury A. K., Necessary and sufficient conditions of pointwise completeness of linear time-invariant delaydifferential systems. Int. J. Control, Vol. 16, No. 6, 1972, pp. 1083-1100.
- [6] Campbell, S.L., Meyer, C.D. and Rose, N.J. (1976), “Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients”, SIAMJ Appl. Math., vol. 31, no. 3, 411-425.
- [7] Dai, L. (1989), “Singular control systems”, Lectures Notes in Control and Information Sciences, Springer-Verlag, Berlin.
- [8] Guang-Ren Duan, Analysis and Design of Descriptor Linear Systems, Springer, New York, 2010.
- [9] L. Farina and S. Rinaldi, Positive Linear Systems; Theory and Applications, J. Wiley, New York 2000.
- [10] Kaczorek T., Busłowicz M., Pointwise completeness and pointwise degeneracy of linear continuous-time fractional order systems, Journal of Automation, Mobile Robotics & Intelligent Systems, Vol. 3, No. 1, 2009, pp.8-11.
- [11] Kaczorek, T. (2013), “Application of Drazin inverse to analysis of descriptor fractional discrete-time linear systems with regular pencils”, Int. J. Appl. Math. Comput. Sci., vol. 23, no. 1, 29-34.
- [12] Kaczorek, T. (2011a), “Checking of the positivity of descriptor linear systems by the use of the shuffle algorithm”, Archives of Control Sciences, vol. 21, no. 3, 2011, 287-298.
- [13] Kaczorek T., Drazin inverse matrix method for fractional descriptor continuous-time linear systems, Submitted to Bull. Pol. Ac. Techn. Sci., v.62, no.3, 2014 (in press).
- [14] Kaczorek, T. (2004), “Infinite eigenvalue assignment by outputfeedbacks for singular systems”, Int. J. Appl. Math. Comput. Sci., vol. 14, no. 1, 19-23.
- [15] Kaczorek, T. (1992), Linear Control Systems, vol. 1, Research Studies Press J. Wiley, New York.
- [16] Kaczorek, T. (2013), “Minimum energy control of positive fractional descriptor continuous-time linear systems”, IET Control Theory and Applications (in Press).
- [17] Kaczorek T., Pointwise completeness and pointwise degeneracy of 2D standard and positive Fornasini-Marchesini models, COMPEL, vol. 30, no. 2, 2011, 656-670.
- [18] Kaczorek T., Pointwise completeness and pointwise degeneracy of standard and positive fractional linear systems with state-feedbacks, Archives of Control Sciences, Vol. 19, 2009, pp.295-306.
- [19] Kaczorek T., Pointwise completeness and pointwise degeneracy of standard and positive linear systems with statefeedbacks, JAMRIS, Vol. 4, No. 1, 2010, pp. 3-7.
- [20] Kaczorek, T. (2002), Positive 1D and 2D Systems, Springer-Verlag, London.
- [21] Kaczorek T. (2011), “Reduction and decomposition of singular fractional discrete-time linear systems”, Acta Mechanica et Automatica, Vol. 5, No. 4, 2011, 62-66.
- [22] Kaczorek, T. (2011b), Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin.
- [23] Kaczorek T. (2011), “Singular fractional discrete-time linear systems”, Control and Cybernetics, vol. 40, no.3, 753-761.
- [24] Olbrot A., On degeneracy and related problems for linear constant time-lag systems, Ricerche di Automatica, Vol. 3, No. 3, 1972, pp.203-220.
- [25] Popov V. M., Pointwise degeneracy of linear time-invariant delay-differential equations, Journal of Diff. Equation, Vol. 11, 1972, pp.541-561.
- [26] Trzasko W., Busłowicz M., Kaczorek T., Pointwise completeness of discrete-time cone-systems with delays, Proc. EUROCON 2007, Warsaw, pp. 606-611.
- [27] Weiss L., Controllability for various linear and nonlinear systems models, Lecture Notes in Mathematics, Vol. 144, Seminar on Differential Equations and Dynamic System II, Springer, Berlin 1970, pp. 250-262.
- [28] Virnik E.: Stability analysis of positive descriptor systems, Linear Algebra and its Applications, vol. 429, 2008, pp. 2640-2659.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8f47d55-b8e5-42d7-99c7-3ca83d669263