PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New energetic materials derived from common explosives. Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
2,4,6-Trinitrotoluen jako źródło nowoczesnych materiałów wybuchowych. Przegląd
Języki publikacji
EN
Abstrakty
EN
The review discusses the products of 2,4,6-trinitrotoluene reactions which have explosive properties or are potentially high-energy compounds. The following compounds are discussed: trinitrobenzene, cyanotrinitrobenzene, trinitroxylene, aminotrinitrotoluenes, trinitronitromethylbenzene, methylene bis(2,4,6-trinitrobenzene), hexanitrostilbene, nitromethyldiphenylamines, 4,4’,6,6’-tetranitro- 2,2’-azoxytoluene and 2,4,6-trinitrobenzylideneamine derivatives. The synthesis pathways are provided for all compounds and the detonation parameters are presented for selected compounds.
PL
Omówiono wybrane, mające właściwości wybuchowe lub będące potencjalnie związkami energetycznymi, produkty reakcji w których 2,4,6-trinitrotoluen jest substratem. Opisano między innymi: trinitrobenzen, cyjanotrinitrobenzen, trinitroksylen, amino-trinitrotolueny, trinitro-nitrometylo-benzen, metylenobis(2,4,6-trinitrobenzen), heksanitrostilben, nitro-metylo-difenyloaminy, 4,4’,6,6’-tetranitro- 2,2’-azoksytoluen oraz pochodne 2,4,6-trinitrobenzylidenoaminy. Dla każdego opisanego związku przedstawiono ścieżkę syntezy oraz dla wybranych materiałów podano parametry detonacyjne.
Rocznik
Tom
Strony
90--110
Opis fizyczny
Bibliogr. 126 poz., rys., tab.
Twórcy
  • Military University of Technology, Faculty of Advanced Technologies and Chemistry, Laboratory of Explosives, 2 gen. S. Kaliskiego Street, 00-908 Warsaw, Poland
  • Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, 6 Annopol Street, 03-236 Warsaw, Poland
Bibliografia
  • [1] Wilbrand J.N. Ueber Trinitrotoluol. Justus Liebigs Annalen der Chemie 1863, 128(2): 178-179.
  • [2] Chemical Compounds. Schlager N., Weisblatt J., Newton E.D., Montney B.Ch. Eds., London: Thomson Gale, 2006; ISBN 1414401507.
  • [3] Brown I.G. A History of Explosives. From Gunpowder to the Thermonuclear Bomb. (in Polish, translated by Trębiński R.) Warsaw: Książka i Wiedza, 2001; ISBN 83-05-13155-6.
  • [4] Woulfe P. Experiments to Shew the Nature of Aurum Mosaicum. Philosophical Transactions of the Royal Society of London 1771, 61: 114-130.
  • [5] Energetic Materials: Thermophysical Properties, Predictions, and Experimental Measurements. Boddu V., Redner P. Eds., CRC Press, 2010; ISBN 13: 978-1-4398-3514-2.
  • [6] Matys Z., Ziółko M., Glanowska E. Thermostable explosives. (in Polish) Proc. 2nd Semin. New Trends Res. Energ. Mater., Pardubice, Czech Republic, 1999, 21-31.
  • [7] Orzechowski A., Powała D., Maranda A. Perspectives for Using New Insensitive PBX-Type Materials Containing NTO in Boosters. (in Polish) Prace Naukowe GIG Górnictwo i Środowisko 2010, 4(2): 147-152.
  • [8] Vagenknecht J., Jalovy Z. TEX: perspektivni trhavina pro LOVA. Proc. 2nd Semin. New Trends Res. Energ. Mater., Pardubice, Czech Republic, 1999, 188-193.
  • [9] Badgujar D.M., Talawar M.B., Asthana S.N., Mahulikar P.P. Advances in Science and Technology of Modern Energetic Materials: An Overview. J. Hazard. Mater. 2008, 151(2-3): 289-305.
  • [10] Safety Data Sheet. NTO. Chemring Nobel AS., 2013.
  • [11] NTO and Compositions. Low Sensitivity High Explosive. EURENCO, Advertising Materials, 2013, www.eurenco.com [retrieved 12.2015].
  • [12] Mukundan T., Purandare GN., Nair J.K., Pansare S.M., Sinha R.K., Singh H. Explosive Nitrotriazolone Formulates. Def. Sci. J. 2002, 52(2): 127-133.
  • [13] Energetic Materials: Particle Processing and Characterization. Teipel U. Ed., Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA., 2005; ISBN 3-527-30240-9.
  • [14] Wu J.-T., Zhang J.-G., Li T., Li Z.-M., Zhang T.-L. A Novel Cocrystal Explosive NTO/TZTN with Good Comprehensive Properties. RSC Adv. 2015, 5: 28354-28359.
  • [15] Underwood J.C., Wall C., Provatas A., Wallace L. New High Nitrogen Compounds Azoxytriazolone (AZTO) and Azotriazolone (azoTO) as Insensitive Energetic Materials. New J. Chem. 2012, 36: 2613-2617.
  • [16] Bergman H., Pettersson A., Östmark H., Stenmark H., Bergvall-Laitala C. FOX-7, an IM Ingredient Candidate – Where Are We Today? Insensitive Munitions and Energetic Materials Technology Symposium, 2009.
  • [17] Janzon B., Bergman H., Eldsäter C., Latypov V.N., Östmark H. FOX-7 – A Novel, High Performance, Low Sensitivity High Explosive. Proc. FINNEX2002, Finland, 2002, 144-151; ISBN 951-25-1372-2.
  • [18] Lochert J.I. FOX-7 – A New Insensitive Explosive. Report DSTO-TR-1238, 2001.
  • [19] Jalový Z., Mareček P., Dudek K., Weidlich T. Synthesis and Properties of 1,1-Diamino-2,2-dinitroethylene. Proc. 4th Semin. New Trends Res. Energ. Mater., Pardubice, Czech Republic, 2001, 151-161.
  • [20] Zeman S., Krupka M. Some Predictions of the Heats of Fusion, Heats of Sublimation, and Lattice Energies of Energetic Materials. Proc. 4th Semin. New Trends Res. Energ. Mater., Pardubice, Czech Republic, 2001, 393-401.
  • [21] Long G.T., Wight C.A. Thermal Decomposition of a Melt-Castable High Explosive: Isoconversional Analysis of TNAZ. J. Phys. Chem., B 2002, 106: 2791-2795.
  • [22] Dudek K., Mareček P., Jalový Z. Synthesis and some Properties of 1,3,3-Trinitroazetidine (TNAZ). Proc. 4th Semin. New Trends Res. Energ. Mater., Pardubice, Czech Republic, 2001, 75-80.
  • [23] Jadhav H.S., Dhavale D.D., Talawar M.B., Asthana S.N., Krishnamurthy V.N. 1-(3’,5’-Dinitrophenyl),- 3,3-Dinitroazetidine: A New Energetic Materials. Proc. 6th Semin. New Trends Res. Energ. Mater., Pardubice, Czech Republic, 2003, 153-159.
  • [24] Brady E.J., Smith L.J., Hart E.C., Oxley J. Estimating Ambient Vapor Pressures of Low Volatility Explosives by Rising-Temperature Thermogravimetry. Propellants Explos. Pyrotech. 2012, 37(2): 215-222.
  • [25] Klapötke M.T., Stierstorfer J. Potential Replacements of RDX with Low Sensitivities. Insensitive Munitions and Energetic Materials Technology Symposium, 2010.
  • [26] Urbański J. Chemistry and Technology of Explosives. (in Polish) Script 14, Radom: Wyższa Szkoła Inżynierska, 1992.
  • [27] Orzechowski A., Powała D., Maranda A., Nowaczewski J., Pawłowski W. Development of Thermal Stable Explosives. Proc. Conf. Blasting Techniques 2004, Stara Lesna, Slovakia, 2004, 21-30; ISBN 80-968748-2-9.
  • [28] Gorzynski C.S., Maycock J.N. Explosives and Pyrotechnic Propellants for Use in Long Term Deep Space Missions. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740005551_1974005551.pdf [retrieved Dec. 2015].
  • [29] McGuire R.R., Tarver C.M. Chemical-Decomposition Models for the Thermal Explosion Confined HMX, TATB, RDX, and TNT Explosives. Proc. 7th Symp. (Int.) on Detonation, 1981.
  • [30] Meyer R., Köhler J., Homburg A. Explosives. 6th ed., Weinheim: Wiley-VCH, 2007; ISBN 978-3-527-31656-4.
  • [31] Fordham S. High Explosives and Propellants. 2nd ed., Pergamon Press Ltd., 1980; ISBN 0-08-023833-5.
  • [32] Bebie J. Manual of Explosives. Military Pyrotechnics and Chemical Warfare Agents. New York: The Macmillan Co., 1943.
  • [33] Rosenblatt H.D. Unexploded Ordnance Issues at Aberdeen Proving Ground: Background Information. Argonne National Laboratory, Report ANL/EAD/TM-58, 1996.
  • [34] Wildlife Toxicity Assessments for Chemicals of Military Concern. Williams A.M., Reddy G., Quinn Jr. J.M., Johnson S.M. Eds., Elsevier, 2015; ISBN 978-0-12-800020-5.
  • [35] RDX. EURENCO, Advertising Materials, http://www.eurenco.com [retrieved Dec. 2015].
  • [36] Korzun M. A 1000 Words about Explosives and Explosion. (in Polish) Warsaw: Wyd. MON, 1986.
  • [37] Singh B., Malhorta R.K. Hexanitrostilbene and Its Properties. Def. Sci. J. 1983, 33(2): 165-176.
  • [38] HMX. EURENCO, Advertising Materials, http://www.eurenco.com [retrieved Dec. 2015].
  • [39] Elbeih A., Zeman S., Jungova M., Akstein Z. Effect of Different Polymeric Matrices on the Sensitivity and Performance of Interesting Cyclic Nitramines. Cent. Eur. J. Energ. Mater. 2012, 9(2): 131-138.
  • [40] Zeman S. A Study of Chemical Micro-mechanisms of Initiations of Organic Polynitro Compounds. [in:] Energetic Materials: Part 2. Detonation, Combustion. Politzer A.P., Murray S.J. Eds., Theoretical and Computational Chemistry (13) Elsevier 2013; ISBN 0-444-51519-4.
  • [41] Boddu M.V., Viswanath S.D., Ghosh K.T., Damavarapu R. 2,4,6-Triamino-1,3,5-trinitrobenzene (TATB) and TATB-based Formulations – A Review. J. Hazard. Mater. 2010, 181(1-3): 1-8.
  • [42] CL-20. EURENCO, Advertising Materials, http://www.eurenco.com [retrieved Dec. 2015].
  • [43] Szczygielska J., Chlebna S., Makismowski P., Skupiński W. Friction Sensitivity of the ε-CL-20 Crystals Obtained in Precipitation Process. Cent. Eur. J. Energ. Mater. 2011, 8(2): 117-130.
  • [44] Mabey W., Tse S.D., Baraze A., Mill T. Photolysis of Nitroaromatics in Aquatic Systems. I. 2,4,6-Trinitrotoluene. Chemosphere 1983, 12(1): 3-16.
  • [45] Latendresse A.C., Fernandes C.S., Sangmin Y., Euler B.W. Speciation of the Products of and Establishing the Role of Water in the Reaction of TNT with Hydroxide and Amines: Structure, Kinetics, and Computational Results. J. Phys. Chem., A 2013, 117(44): 11167-11182.
  • [46] Baker L.E., Di Stasio A. Insensitive Munitions Technology Development. Problems of Mechatronics: Armanent, Aviation, Safety Engineering 2014, 5, 4(18): 7-20.
  • [47] Urbański T., Hackel J., Mortka S., Szyc-Lewańska K., Ślebodziński T., Witek W. On the Possible Improvements in TNT Production. (in Polish) Przem. Chem. 1959, 38: 551-554.
  • [48] Ziółko M., Matys Z., Glanowska E., Chlebowski W., Malatyński A. Pure TNT Fabrication Method. (in Polish) Patent PL 171918 (filed in 1992), 1993.
  • [49] Matys Z., Powała D., Orzechowski A., Sałaciński T., Maranda A. Methods of Obtaining of High Purity TNT. Proc. 17th Semin. New Trends Res. Energ. Mater., Pardubice, Czech Republic, 2014, 857-864.
  • [50] Bensiali E. Analyse informatique de spectres de masse: application à la recherche de traces de molécules d’explosifs dans des traces digitales. Université de Liège, 2014, www.student.montefiore.ulg.ac.be/~092597/rapport.pdf [retrieved Dec. 2015].
  • [51] Hu P., Zhang Y., Lv F., Wang X., Wei F., Meng X., Jiang S. Organic Pollution Removal from TNT Red Water Using Cu-Impregnated Active Coke. Water Air Soil Pollut. 2014, 225: 1936-1946.
  • [52] Chusova O., Nõlvak H., Odlare M., Truu J., Truu M., Oopkaup K., Nehrenheim E. Biotransformation of Pink Water TNT on the Surface of a Low-cost Adsorbent Pine Bark. Biodegradation 2015, 26(5): 375-386.
  • [53] Chusova O. Remediation of TNT-contaminated Water by Using Industrial Low-cost Residue Pine Bark. Sweden: Mälardalen University Press Dissertations (183), 2015; ISBN 978-91-7485-226-4.
  • [54] History of London. WW1 – 1917 Silvertown Explosion. http://www.history.co.uk/study-topics/history-oflondon/ww1-1917-silvertown-explosion html [retrieved Dec. 2015].
  • [55] Jasiński M. City Shaken by Large TNT Explosion. (in Polish) Gazeta Wyborcza, 2012, http://bydgoszcz.wyborcza.pl/kapusciska/56,112595,12881250,Wielka_eksplozja_trotylu_wstrzasnela_calym_miastem.html [retrieved Dec. 2015].
  • [56] Explosion Due to an Incompatible Reaction in a Nitration Workroom for TNT. November 19, 1996, Japan, http://www.sozogaku.com/fkd/en/cfen/CC1200041.html [retrieved Dec. 2015].
  • [57] Investigation Report. Explosives Manufacturing Incident. U.S. Chemical Safety and Hazard Investigation Board Report 98-001-I-NV, www.csb.gov/assets/1/19/final_sierra.pdf [retrieved Dec. 2015].
  • [58] Kozak D.G., Raikova M.V. Hazard of Runaway of Nitration Processes in Nitrocompounds Production. Cent. Eur. J. Energ. Mater. 2010, 7(1): 21-32.
  • [59] Ravi P., Badgujar M.D., Gore M.G., Tewari P.S., Sikder K.A. Review on Melt Cast Explosives. Propellants Explos. Pyrotech. 2011, 36(5): 393-403.
  • [60] Trzciński A.W., Cudziło S., Dyjak S., Nita M. A Comparison of the Sensitivity and Performance Characteristics of Melt-pour Explosives with TNT and DNAN Binder. Cent. Eur. J. Energ. Mater. 2013, 11(3): 443-454.
  • [61] Trzciński A.W., Szymańczyk L. Detonation Properties of Low-Sensitivity NTO-Based Explosives. J. Energ. Mater. 2005, 23(3): 151-168.
  • [62] Lasota J. 3-Nitro-1,2,4-triazol-5-one (NTO) as a Component of Low Sensitive Explosive Compositions. Copernican Lett. 2013, 4: 75-79.
  • [63] Mitchell R.A., Hsu C.P., Coburn D.M., Schmidt D.R., Pagoria F.P., Lee S.G. Chemical Conversion of Energetic Materials to Higher Value Products. 2nd Int. Symp. Energetic Materials and Their Applications ISEM 2005, Japan, LANL Report UCRL-CONF-211787, 2005.
  • [64] Mitchell R.A., Coburn D.M., Schmidt D.R., Pagoria F.P., Lee S.G. Conversion of Surplus Energetic Materials to Higher Value Products. A New Production of TATB. 6th Conf. Life Cycles of Energetic Materials, Westminster, Colorado, LANL Report UCRL-JC-147642, 2002.
  • [65] Walenczykowska H. Pure TNT. (in Polish) Nowości. Dziennik Toruński, 2013, http://nowosci.com.pl/195943,Trotyl-czysty-jak-lza.html [retrieved Dec. 2015].
  • [66] www.nitrochem.com.pl [retrieved Dec. 2015].
  • [67] Szala M., Kruzel A., Szymańczyk L. 3,3’-Diamino-4,4’-azoxyfurazan – Synthesis and Properties. (in Polish) Mater. Wysokoenerg. (High Energy Mater.) 2012, 4: 27-35.
  • [68] Szala M., Szymańczyk L. High-Energy Azotetrazole Salts – Synthesis and Properties. (in Polish) Biul. WAT 2011, 60(3): 97-106.
  • [69] Szala M., Borkowski A. The Effects of High-Energy Azotetrazole Salts on Microbiological Activity in Soil. (in Polish) Biul. WAT 2012, 61(4): 307-324.
  • [70] Biological Remediation of Explosive Residues. Shree N.S. Ed., Switzerland: Springer International Publishing, 2014; ISBN 978-3-319-01082-3.
  • [71] Becker M.N. Fate of Selected High Explosives in the Environment: A Literature Review. LANL Report LA-UR-95-1018, 1995.
  • [72] Cudziło S., Trzciński A.W. Low-Melting Secondary Explosives. (in Polish) Biul. WAT 2014, 63(4): 71-79.
  • [73] Tian M.-M., Li H.-R., Chen L., Ju X., Shu Y.-J. Phase Diagrams of the MeNQ/HN and HN/NQ Binary Systems. Cent. Eur. J. Energ. Mater. 2015, 12(2): 271-286.
  • [74] Davies J.P., Provatas A. Characterisation of 2,4-Dinitroanisole: An Ingredient for use in Low Sensitivity Melt Cast Formulations. DSTO-TR-1904, 2006.
  • [75] Kuboszek R., Słoń K., Mąkosza M., Przybylik R., Lachiewicz D. Synthesis of 5,2-Diphenylmethane and 6-Nitrodiphenylmethane. (in Polish) Patent PL 110196 (filed in 1978), 1981.
  • [76] Kaplan L.D., Kaplan M.A. Reactivity of TNT and TNT-microbial Reduction Products with Soil Components. Technical Report NATICK/TR-83/041, Massachusetts, 1983.
  • [77] Qasim M., Gorb L., Magers D., Honea P., Leszczynski J., Moore B., Taylor L., Middleton M. Structure and Reactivity of TNT and Related Species: Application of Spectroscopic Approaches and Quantum-Chemical Approximations toward Understanding Transformation Mechanisms. J. Hazard. Mater. 2009, 15(167): 154-163.
  • [78] Wittich R.-M., Benjamin A.H., van Dillewijn P., Ramos J.-L. OYE Flavoprotein Reductases Initiate the Condensation of TNT-Derived Intermediates to Secondary Diarylamines and Nitrite. Environ. Sci. Technol. 2008, 42: 734.
  • [79] Sabnis W.R. Handbook of Acid-Base Indicators. Boca Raton/London/New York: CRC Press, 2007; ISBN 13: 978-0-8493-8219-2.
  • [80] Urbański T. Chemistry and Technology of Explosives. Vol. 1, New York: Pergamon Press, 1964; ISBN 0-08-026206-6.
  • [81] Mishra S.V., Vadali R.S., Garg K.R., Joshi S.V., Wasnik D.R., Asthana S. Studies on FOX-7 Based Melt Cast High Explosive Formulations. Cent. Eur. J. Energ. Mater. 2013, 10(4): 569-580.
  • [82] Cudziło S., Trzciński A.W., Dyjak S., Nita M. Low-melting Explosive Compositions with Trinitrotoluene and Dinitroanisole − Comparison of Properties. (in Polish) Biul. WAT 2012, 61(4): 281-292.
  • [83] Zbarskii V.L., Yudin N.V., Ivchenko A.N., Derevickaja A.G. About the Possibility on Activation by a Reaction of Methylene Group in Nitroderivatives. III. Obtaining of 2,4,6-Trinitrobenzonitrile in the Reactions of 2,4,6-Trinitrotoluene with Anhydride and Chloride Acids. (in Russian) Russ. J. Org. Chem. 1995, 31(8): 1182-1183.
  • [84] Sitzmann E.M., Dacons C.J. Formation of 2,4,6-Trinitrobenzonitrile and 4-Chloro-5,7-dinitro-2-(2,4,6-trinitrophenyl)quinazoline 1-Oxide by the Action of Nitrosyl Chloride on 2,4,6-Trinitrotoluene. J. Org. Chem. 1973, 38(26): 4363-4365.
  • [85] Atkins L.R., Hollins A.R., Wilson S.W. Synthesis of Polynitro Compounds. Hexasubstituted Benzenes. J. Org. Chem. 1986, 51(17): 3261-3266.
  • [86] Sitzmann E.M., Kaplan A.L., Angers I. Fluorotrinitromethane as an Alkaline Nitrating Agent. Preparation of α,2,4,6-Tetranitrotoluene from 2,4,6-Trinitrotoluene. J. Org. Chem. 1977, 42: 563-564.
  • [87] Makarevich A.V., Shcherbinin M.B., Bazanov A.G., Tselinskii I.V. Ion-radical Reactions of Carbanions of n-Nitro-, 2,4-Dinitro- and 2,4,6-Trinitrotoluenes with Polynitroalkanes. Russ. J. Org. Chem. 1999, 35(5):710-718.
  • [88] Mitchell R.A., Pagoria F.P., Schmidt D.R. Conversion of the Rocket Propellant UDMH to a Reagent Useful in Vicarious Nucleophilic Substitution Reactions. JANNAF Safety & Environmental Protection Subcommitte Meeting, Tampa, Florida, 1995.
  • [89] Mitchell R.A., Pagoria F.P., Schmidt D.R. Proc. 211st American Chemical Society National Meeting, New Orleans, USA, 1996, 78-82.
  • [90] Wu B., Yang H., Wang Z., Lin Q., Ju X., Lu Ch., Cheng G. Synthesis and Characterization of New Energetic Derivatives Containing a High Nitrogen Content Moiety and Picryl Group: a New Strategy for Incorporating the Picryl Functionality. RSC Adv. 2014, 4: 53282-53290.
  • [91] Sitzmann E.M. Chemical Reduction of 2,4,6-Trinitrotoluene – Initial Products. J. Chem. Eng. Data 1974, 19(2): 179-181.
  • [92] Agrawal J.P., Hodgson R.D. Organic Chemistry of Explosives. Chichester: John Wiley & Sons Ltd., 2007; ISBN-13: 978-0-470-02967-1.
  • [93] Shipp G.K., Kaplan A.L., Sitzmann E.M. Reactions of α-Substituted Polynitrotoluenes. III. 2,4,6-Trinitrobenzyl Anion as a Nucleophile at Aromatic Carbon. J. Org. Chem. 1972, 37(12): 1966-1970.
  • [94] Shipp G.K., Kaplan A.L. Polynitrobenzophenone. Patent US 3574758, 1967.
  • [95] Hexanitrostilbene (HNS). EURENCO, Advertising Materials, 2013. www.eurenco.com/wp-content/uploads/2013/07/HNS.pdf [retrieved Dec. 2015].
  • [96] Kerley I.G. Theoretical Equations of State for the Detonation Products of Explosives. Proc. 8th Symp. (Int.) on Detonation, Albuquerque, USA, 1985, 540-547.
  • [97] Octogen – a Thermostable Explosive. (in Polish, Syczewski M. translated from Russian and amended) Warsaw: Wyd. MON, 1987.
  • [98] Atkins R., Nielsen A., Bergens C., Wilson W. Synthesis of Polynitrobenzenes. Oxidation of Polynitroanilines and Their N-Hydroxy, N-Methoxy, and N-Acetyl Derivatives. J. Org. Chem. 1984, 49(3): 503-507.
  • [99] Lock G. Ueber die Abspaltung der Aldehydgruppe als Ameisensäure aus Aromatischen Aldehyden, II. Mitteil.: Polynitrobenzaldehyde. Berichte der Deutschen Chemischen Gesellschaft 1933, 66(12): 1759-1765.
  • [100] Clarke T.H., Hartman W.W. 1,3,5-Trinitrobenzene. Org. Synth. 1922, 2: 93.
  • [101] Meyer L., Giersbach J. Berichte 1889, 7(2): 22-24.
  • [102] Lee W.H., Park G.S., Kim S.C. The Phthaloyl chloride-Induced Conversion Reactions of Trinitrobenzene into Nitroaryl Halides. Bull. Korean Chem. Soc. 2011, 32(8): 2820-2822.
  • [103] Shipp G.K. Reactions of R-substituted Polynitrotoluenes. I. Synthesis of 2,2′,4,4′,6,6′-Hexanitrostilbene. J. Org. Chem. 1964, 29: 2620-2623.
  • [104] Venter F.A., Fouche C.F. The Effects of Additions (HNS) in Explosives Filling on the Integrity of TNT Based Columns and Finally the Terminal Performance of the Shells. Proc. 27th Int. Annual Conf. ICT, Karlsruhe, Germany, 1996, P68/1-7.
  • [105] Brand K., Eisenmenger T. Ueber die Partielle Reduktion Aromatischer Polynitroverbindungen auf Elektrochemischem Wege. III. J. Prakt. Chemie 1913, 2(87): 504.
  • [106] Channon H., Mills G., Williams R. The Metabolism of 2,4,6-Trinitrotoluene (α-T.N.T.). Biochem J. 1944, 38(1): 70-85.
  • [107] Wang Ch., Lyon D., Hughes J., Bennett G. Role of Hydroxyloamine Intermedieates in the Phytotransformation of 2,4,6-Trinitrotoluene by Myriophyllum aquaticum. Environ. Sci. Technol. 2003, 37: 3595-3600.
  • [108] Lemberg R., Callaghan J.P. Metabolism of Aromatic Nitro Compounds. 3. Isolation of Reduction Products of 2,4,6-Trinitrotoluene from the Urine of Rats and from Human Urine. Aust. J. Exp. Biol. Med. Sci. 1945, 23: 13-20.
  • [109] Sachs S., Everding K. Chemisches Zentralblatt 1901, 72: 69.
  • [110] Gnehm R. Ueber Derivate des Methyldiphenylamins. Chemische Berichte 1874, 7(2): 1399-1401, DOI: 10.1002/cber.187400702142.
  • [111] Claus A., Becker H. Ueber Trinitrotoluol und das flüssige Dinitrotoluol. Chemische Berichte 1883, 16: 1597.
  • [112] Mitchell R.A., Pagoria F.P., Schmidt D.R. Amination of Electrophilic Aromatic Compounds by Vicarious Nucleophilic Substitution. Patent US 6069277A, 2000.
  • [113] Zlotin S.G., Kilslitin P.G., Samet A.V., Serebryakov E.A., Konyushkin L.D., Semenov V.V., Buchanan A.C., Gakh A.A. Synthetic Utilization of Polynitroaromatic Compounds. 1. S-Derivatization of 1-Substituted 2,4,6-Trinitrobenzenes with Thiols. J. Org. Chem. 2000, 65(25): 8430-8438.
  • [114] Benedetti F., Marshall R.D., Stirling J.M.C., Leng L.J. Regiospecificity in Nucleophilic Displacement of Aromatic Nitro-groups. J. Chem. Soc. Commun. 1982, 16: 918-919.
  • [115] Spear J.R., Wilson S.W. Recent Approaches to the Synthesis of High Explosive and Energetic Materials:A Review. Department of Defence Report MRL-R-850, 1982; ISBN 0642877793.
  • [116] Tanasescu I., Nanu I. Ueber Nitrone, II. Mitteil.: Kondensation von Aryl-nitrosoverbindungen mit Dinitrotoluol. Berichte der deutschen chemischen Gesellschaft 1942, 75(6): 650-655.
  • [117] Mąkosza M., Winiarski J. Vicarious Nucleophilic Substitution of Hydrogen. Acc. Chem. Res. 1987, 20(8):282-289.
  • [118] Jorgenson J.M., Hartter R.D. A Critical Re-evaluation of the Hammett Acidity Function at Moderate and High Acid Concentrations of Sulfuric Acid. New H0 Values Based Solely on a Set of Primary Aniline Indicators. J. Am. Chem. Soc. 1963, 85(7): 878-883.
  • [119] Sierra J., Ojeda M., Wyatt P.A.H. The D0 Acidity Function in Deuterium Sulphate Solutions at 25 ºC. J. Chem. Soc. B 1970, 1570-1573.
  • [120] Iyer S. Explosive Desensitization Studies via Chemical Group Modification. Nitroso-Derivatives of RDX and 3-Amino-TNT. Propellants Explos. Pyrotech. 1982, 7(2): 37-39.
  • [121] Iyer S. Explosive Desensitization Studies via Chemical Group Modification II. 3,5-Diamino and 3,5-Dichloro-2,4,6-trinitrotoluene. J. Energ. Mater. 1984, 2(1-2): 151-158.
  • [122] Fittig R., Velguth J. Ueber das Isoxylol, einen Neuen, mit dem Xylol Isomerischen Kohlenwasserstoff. Justus Liebigs Annalen der Chemie 1868, 148: 1-23.
  • [123] Fieser F.L., Clapp C.R., Daudt H.W. Methylation of Aromatic Nitro Compounds with Lead Tetraacetate. J. Am. Chem. Soc. 1942, 64(9): 2052-2059.
  • [124] Yasuda K.S. Identification of Impurities in α-Trinitrotoluene by Thin-layer Chromatography. J. Chromatogr. 1964, 13: 78-82.
  • [125] Parnes Z.N., Shein S.M., Kalinkin M.I., Sidel’nikova L.I., Kursanov D.N. Jackson-Meisenheimer Complexes as Hydride-ion Donors. Bull. Acad. Sci. USSR 1971, 20(10): 2237-2240.
  • [126] Kawakami T., Suzuki H. Masked Acylation of m-Dinitrobenzene and Derivatives with Nitroalkanes under Basic Conditions: Nitromethylation and α-(Hydroxyimino)alkylation. Tetrahedron Lett. 1999, 40:1157-1160.
Uwagi
Artykuł został pierwotnie opublikowany w jęz. polskim w Materiały Wysokoenergetyczne 2015, 7: 125-143.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8f34647-a644-4366-9dad-91d86abdc2fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.