PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Particulate matter concentrations and size distributions during different stages of municipal solid waste biostabilization

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Stężenia i wielkości rozkładów cząstek stałych podczas różnych etapów biostabilizacji odpadów komunalnych : ocena terenowa w wysokiej rozdzielczości
Języki publikacji
EN
Abstrakty
EN
Particulate matter (PM) is released during waste management operations as a result of various mechanical and chemical processes. The emission of specific chemical compounds is influenced by transformations occurring during the phases of aerobic waste biodegradation. This study provides a thorough analysis of particle number concentrations (PNC) and PM concentrations measured at a composting facility handling organic waste, with a focus on the detailed fractionation of PM to identify which fractions predominate in different areas of the composting site. PNC measurements were conducted using an Optical Particle Sizer, which detects the number of particles within the 0.3 – 10 μm size range through single-particle counting. Differences in PNC observed between the compost piles and other areas of the facility were minimal. The average mass concentrations of PM1, PM2.5, and PM10 on the waste piles were 1.71 μg/m3, 4.5 μg/m3, and 19.77 μg/m3, respectively. Similar to PNC, higher PM concentrations were observed for fresh and maturing compost piles, with increases of up to 86% compared to mature piles at the end of the process. These findings provide critical insights into the distribution of airborne particles within a biodegradable waste composting facility, an environment with significant implications for environmental monitoring and public health.
PL
Niniejsze badanie oferuje dogłębną analizę stężeń liczby cząstek (PNC) i stężeń PM mierzonych w kompostowni przetwarzającej odpady organiczne, z naciskiem na szczegółowe frakcjonowanie PM w celu określenia, które frakcje dominują w różnych obszarach kompostowni. Pomiary PNC przeprowadzono przy użyciu urządzenia Optical Particle Sizer, które wykrywa liczbę cząstek w zakresie wielkości 0,3 - 10 μm poprzez zliczanie pojedynczych cząstek. Różnice w PNC zaobserwowane między stosami kompostu a innymi obszarami zakładu były minimalne. Średnie stężenia masowe PM1, PM2,5 i PM10 na pryzmach odpadów wynosiły odpowiednio 1,71 μg/m3, 4,5 μg/m3 i 19,77 μg/m3. Podobnie jak w przypadku PNC, wyższe stężenia PM zaobserwowano dla świeżych i dojrzewających pryzm kompostu, ze wzrostem do 86% w porównaniu do dojrzałych pryzm na końcu procesu. Wyniki zapewniają krytyczny wgląd w dystrybucję cząstek zawieszonych w powietrzu w zakładzie kompostowania odpadów biodegradowalnych, środowisku o znaczących konsekwencjach dla monitorowania środowiska i zdrowia publicznego.
Rocznik
Strony
98--110
Opis fizyczny
Bibliogr. 30 poz., tab., wykr.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Environmental Enginering, Poland
  • Warsaw University of Technology, Faculty of Environmental Enginering, Poland
  • Warsaw University of Technology, Faculty of Environmental Enginering, Poland
Bibliografia
  • 1. Barkhordari, A., Guzman, M.I., Ebrahimzadeh, G., Sorooshian, A., Delikhoon, M., Rastani, M.J., Golbaz, S., Fazlzadeh, M., Nabizadeh, R. & Baghani, A.N. (2022). Characteristics and health effects of particulate matter emitted from a waste sorting plant, Waste Management, 150, pp. 244-256. DOI:10.1016/j.wasman.2022.07.012
  • 2. Bounakhla, Y., Benchrif, A., Costabile, F., Tahri, M., El Gourch, B., El Hassan, E.K., Zahry, F. & Bounakhla, M. (2023). Overview of PM10, PM2.5 and BC and Their Dependent Relationships with Meteorological Variables in an Urban Area in Northwestern Morocco, Atmosphere, 14, 1, 162. DOI:10.3390/atmos14010162
  • 3. Chalvatzaki, E., Aleksandropoulou, V., Glytsos, T. & Lazaridis, M. (2012). The effect of dust emissions from open storage piles to particle ambient concentration and human exposure, WASTE MANAGEMENT, 32, 12, pp. 2456-2468. DOI:10.1016/j.wasman.2012.06.005
  • 4. Chalvatzaki, E., Aleksandropoulou, V. & Lazaridis, M. (2013). A Case Study of Landfill Workers Exposure and Dose to Particulate Matter-Bound Metals, Water, Air, & Soil Pollution, 225, 1, 1782. DOI:10.1007/s11270-013-1782-z
  • 5. Chalvatzaki, E., Kopanakis, I., Kontaksakis, M., Glytsos, T., Kalogerakis, N. & Lazaridis, M. (2010). Measurements of particulate matter concentrations at a landfill site (Crete, Greece), Waste Management, 30, 11, pp. 2058-2064. DOI:10.1016/j.wasman.2010.05.025
  • 6. Ghobakhloo, S., Mostafaii, G.R., Khoshakhlagh, A.H., Moda, H.M. & Gruszecka-Kosowska, A. (2024). Health risk assessment of heavy metals in exposed workers of municipal waste recycling facility in Iran, Chemosphere, 346, 140627. DOI:10.1016/j.chemosphere.2023.140627
  • 7. Khoshakhlagh, A.H., Ghobakhloo, S., Peijnenburg, W.J.G.M., Gruszecka-Kosowska, A. & Cicchella, D. (2024a). To breathe or not to breathe: Inhalational exposure to heavy metals and related health risk. Sci Total Environ., 1, 932:172556. DOI:10.1016/j.scitotenv.2024.172556.
  • 8. Khoshakhlagh A.H., Mohammadzadeh M. & Gruszecka-Kosowska A. (2024b). The preventive and carcinogenic effect of metals on cancer: a systematic review. BMC Public Health, 1, 24. DOI:10.1186/s12889-024-19585-5.
  • 9. Ghobakhloo, S., Khoshakhlagh, A.H., Mostafaii G.R. & Carlsen L. (2025). Biomonitoring of metals in the blood and urine of waste recyclers from exposure to airborne fine particulate matter (PM2.5), Journal of Environmental Health Science and Engineering, 23, 2. DOI: DOI:10.1007/s40201-024-00924-y
  • 10. Huang, X. (2023). The Impact of PM10 and Other Airborne Particulate Matter on the Cardiopulmonary and Respiratory Systems of Sports Personnel under Atmospheric Exposure, Atmosphere, 14, 11, 1697. DOI:10.3390/atmos14111697
  • 11. Ibor, O.R., Khan, E.A. & Arkuwe, A. (2023). A bioanalytical approach for assessing the effects of soil extracts from solid waste dumpsite in Calabar (Nigeria) on lipid and estrogenic signaling of fish Poeciliopsis lucida hepatocellular carcinoma-1 cells in vitro and in vivo African catfish (Clarias gariepinus), Journal of Toxicology and Environmental Health. Part A, 86, 20, pp. 774-789. DOI:10.1080/15287394.2023.2240839
  • 12. Juda-Rezler, K., Reizer, M., Maciejewska, K., Błaszczak, B. & Klejnowski, K. (2020). Characterization of atmospheric PM2.5 sources at a Central European urban background site, Science of The Total Environment, 713, 136729. DOI:10.1016/j.scitotenv.2020.136729
  • 13. Juda-Rezler, K., Reizer, M. & Oudinet, J.-P. (2011). Determination and analysis of PM10 source apportionment during episodes of air pollution in Central Eastern European urban areas: The case of wintertime 2006, Atmospheric Environment, 45, 36, pp. 6557-6566. DOI:10.1016/j.atmosenv.2011.08.020
  • 14. Madhwal, S., Prabhu, V., Sundriyal, S. & Shridhar, V. (2020). Distribution, characterization and health risk assessment of size fractionated bioaerosols at an open landfill site in Dehradun, India, Atmospheric Pollution Research, 11, 1, pp. 156-169. DOI:10.1016/j.apr.2019.10.002
  • 15. Mahato D., Sankar T.K., Ambade B., Mohammad F., Soleiman A.A. & Gautam S. (2023). Burning of Municipal Solid Waste: An Invitation for Aerosol Black Carbon and PM2.5 Over Mid-Sized City in India, Aerosol Science and Engineering, 7, pp 341-354. DOI:10.1007/s41810-023-00184-7
  • 16. Pascale, E., Franchitti, E., Zanchi, N., Anedda, E., Bonetta, S. & Traversi, D. (2022). Size-Fractionated PM10 and Bioaerosol Indicator Development by Different Methods in Composting Plants for Risk Assessment, Frontiers in Environmental Science, 10, 777598. DOI:10.3389/fenvs.2022.777598
  • 17. Pileco Cappelleti, C., Santos Silva, K.T., Rodrigues-Conrad, K., Grams, K.C., Kottwitz da Silva, I., Frielink, A.P., da Rocha Abdallah, S., de Fátima Colet, C., Bortolotto, J.W., Bonfanti-Azzolin, G. & Migliorini Parisi, M. (2023). Cytotoxic and oxidative changes in individuals occupationally exposed to recyclable municipal solid waste, Journal of Toxicology and Environmental Health, Part A, 86, 23, pp. 898-908. DOI:10.1080/15287394.2023.2256782
  • 18. Priyanka, D., Kamdi, P., Bafana, A., Panuganti, S., Sivanesan, S., Kumar, A. & Kannan, K. (2023). Prevalence, Dispersion and Nature of Bioaerosols over a Solid Landfill Site in Central India, Aerosol and Air Quality Research, 23, 220431. DOI:10.4209/aaqr.220431
  • 19. Purdy, C.W., Clark, R.N. & Straus, D.C. (2009). Ambient and indoor particulate aerosols generated by dairies in the south-ern High Plains, Journal of Dairy Science, 92, 12, pp. 6033-6045. DOI:10.3168/jds.2009-2498
  • 20. Reizer, M., Maciejewska, K., Błaszczak, B., Klejnowski, K. & Juda-Rezler, K. (2025). PM10 source apportionment in two different urban sites in Southern Poland, Archives of Environmental Protection, 51, 1, pp.116-134. DOI:10.24425/aep.153755
  • 21. Singh A. (2023). Municipal solid waste management models: a review study to evaluate the conceptual framework for developing nations, International Journal of Environment and Waste Management, 30, 3, pp 303-323. DOI:10.1504/IJEWM.2022.128222
  • 22. Singh A., Mukhopadhyay D., Sarkar J.P. & Dutta S. (2014). Studies on Effect of Plastic on Biodegradation of Vegetable Solid Market Waste Through Detailed Analysis of Leachate, The Journal of Solid Waste Technology and Management, 40, 3, pp: 266-284. DOI:10.5276/JSWTM.2014.266
  • 23. Singh, A. & Raj, P. (2018). Segregation of waste at source reduces the environmental hazards of municipal solid waste in Patna, India, Archives of Environmental Protection, 44, 4, pp. 96-110. DOI:10.24425/aep.2018.122306
  • 24. Siodełko, R. & Boruszko, D. (2024). Numerical model for simulating the hydraulic parameters of the aeration system ensuring equal oxygenation of the compost heap, Archives of Environmental Protection, 50, 1, pp. 87-94. DOI:10.24425/aep.2024.149435
  • 25. Szyłak-Szydłowski, M. & Kos, W. (2024). Application of Sensory Methods to Evaluate the Effectiveness of Solutions to Reduce the Exposure to Odour Nuisance and Ammonia Emissions from the Compost Heaps, Sensors, 24, 13, 4200. DOI:10.3390/s24134200
  • 26. Urbanowicz, T., Skotak, K., Olasińska-Wiśniewska, A., Filipiak, K.J., Bratkowski, J., Wyrwa, M., Sikora, J., Tyburski, P., Krasińska, B., Krasiński, Z., Tykarski, A. & Jemielity, M. (2024). Long-Term Exposure to PM10 Air Pollution Exaggerates Progression of Coronary Artery Disease, Atmosphere, 15, 2, 216. DOI:10.3390/atmos15020216
  • 27. Vega, E., Mugica, V., Reyes, E., Sánchez, G., Chow, J.C. & Watson, J.G. (2001). Chemical composition of fugitive dust emitters in Mexico City, Atmospheric Environment, 35, 23, pp. 4033-4039. DOI:10.1016/S1352-2310(01)00164-9
  • 28. Viegas, S., Almeida-Silva, M. & Viegas, C. (2014). Occupational exposure to particulate matter in 2 Portuguese waste-sorting units, International Journal of Occupational Medicine and Environmental Health, 27, 5, pp. 854-862. DOI:10.2478/s13382-014-0310-8
  • 29. Wong, M.W., Tzeng, S.-Y., Mo, H.-F. & Su, W. (2024). Impact of COVID-19 on PM2.5 concentrations in Singapore, Indonesia, and Thailand: Cluster Analysis and Generalized Additive Mixed Models, Archives of Environmental Protection, 50, 4, pp. 116-126. DOI:10.24425/aep.2024.152901
  • 30. Yang, Z., Mahendran, R., Yu, P., Xu, R., Yu, W., Godellawattage, S., Li, S. & Guo, Y. (2022). Health Effects of Long-Term Exposure to Ambient PM2.5 in Asia-Pacific: A Systematic Review of Cohort Studies, Current Environmental Health Reports, 9, 2, pp. 130-151. DOI:10.1007/s40572-022-00344-w
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8ee1b87-ec05-4e77-b549-450cb28a0fdc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.