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Abstract. Heat transfer processes occurring in the micro-domains can be described using 

the dual-phase lag equation (DPLE). This equation can be applied as a model of heating of 

the thin metal film subjected to the femtosecond laser pulse. In the paper, the 1D dual phase 

lag equation containing the additional internal heat source resulting from the laser pulse 

irradiation and supplemented by the appropriate boundary and initial conditions is consid-

ered. Appearing in this equation two lag times τq (the phase lag of the heat flux) and τT 

(the phase lag of the temperature gradient) are taken into account. An analytical solution of 

this equation under the assumption that τT > τq is presented. The separation of the variables 

technique and the Green’s function method are used in order to find this solution. 

In the final part of the paper, the example of computations is presented. 
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1. Introduction 

The thermal processes proceeding in the micro-domain of thin metal film 

subjected to a strong laser pulse are characterized by the extreme temperature 

gradients, the extremely short duration, and additionally the very small geometrical 

dimensions. In this case, the application of the classical Fourier heat transfer model 

is not recommended. The non-Fourier models are proposed as well as the dual 

phase lag model (DPLM) which is considered in the presented paper. DPLE 

belongs to the group of the hyperbolic partial differential equations. In this equa-

tion, two positive constants τq, τT (the relaxation time and the thermalization time) 

appear. Nowadays, the problem of heat transfer through the thin metal films 

subjected to the strong external heat source (e.g. the femtosecond laser pulse) is 

the subject of many scientific papers [1-8]. 
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In this paper, the considerations concerning the analytical solution of DPLE 

in the 1D bounded domain are discussed. To obtain this solution, the combination 

of the variables separation method and the Green’s function is used. The particular 

solution for the given laser beam profile (as a time dependent function) is pre-

sented. In the final part of the paper, the example of computations is shown. 

2. Governing equations 

The following energy equation corresponding to the DPLM for the domain 

oriented in the Cartesian co-ordinate system is considered (e.g. [9-11] 
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where T is a temperature, c, ρ, λ denote the specific heat, mass density and thermal 

conductivity, τq is a relaxation time, while τT is a thermalization time, x, t are the 

geometrical co-ordinate and time. The function Φ is related with the internal heat 

source ( , )Q x t  which is generated inside the domain, as the effects of the femto- 

second laser pulse irradiation on the metal film surface (the energy is fed into the 

domain interior and its absorption takes place). So 
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and I0 is a laser intensity, R is a reflectivity of an irradiated surface, δ is an optical 

penetration depth, β = 4 ln2 and tp is a characteristic time of laser pulse. 

On the boundaries of the 1D domain of thickness L, the adiabatic conditions 

are assumed 

 
( ) ( ) ( ) ( )2 2

0

, , , ,
0, 0

T T

x x L

T x t T x t T x t T x t

x t x x t x
= =

   ∂ ∂ ∂ ∂
+ = − + =      ∂ ∂ ∂ ∂ ∂ ∂   

λ τ λ τ  (4) 

The initial temperature and the initial heating rate are also given 
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3. Analytical solution 

The solution of the 1D hypergeometric partial differential equation (Eq. (1) with 

the initial conditions (5) and the no-flux boundary conditions (4)) can be found 

in the general form as [12, 13] 
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where the Green function ( ), ,G x tξ  is determined by solving the following ho-

mogenous equation 
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which satisfies the initial conditions 
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and the homogenous boundary conditions 
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According to [12], the Green’s function can be expressed as 
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where functions 
n
ϕ  and 

n
ψ  should be determined. So, the particular solution of 

Eq. (1) for ( ), 0x tΦ =  is the product of the functions  
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 ( ) ( ) ( ),T x t x t=ϕ ψ  (11) 

Next, introducing Eq. (11) into Eq. (1) and omitting the term ( ),x tΦ  one obtains 

the equation 
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After the separation of variables in above equation, and assuming that both sides 

of (12) are equal to the same constant value, i.e. 2

n
−µ  
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one obtains the following equations 
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The eigenfunctions and eigenvalues of the Sturm-Liouville problem (14), in 

which the boundary conditions are determined by the substitution (11) into (4), are 

the following 
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The functions 
n
ψ  are determined by solving Eq. (15) with the initial conditions 

( )0 0=ψ and ( )
0

d / d 1
t

t t
=

=ψ . If one assumes that q T<τ τ , then the solution of 

the considered initial problem simplifies to the form 
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Putting Eqs. (16) and (18) into Eq. (10), one finally obtains the Green’s function 

in the form  

 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

0

1

1, for 0sinh1
, , cos cos exp

2, for 0

sinh1
1 exp 2 cos cos exp

n

n n n

n n

n

q n n n

nq n

nf t
G x t x d t

nL f

f tt
x d t

L f

∞

=

∞

=

=
= − ⋅ 

>

   
 = − − + −        

∑

∑

ξ µ µ ξ

τ µ µ ξ
τ

 (20) 

It can be easily checked that the Green’s function (10) satisfies the problem (7)-(9). 

The knowledge of the Green’s function and the boundary-initial conditions 

allows one to use the analytical solution (6) for numerical computations. From 

a practical point of view, such a form of a solution containing the integrals can be 

inconvenient. Therefore by using the analytical techniques, the particular terms 

in Eq. (6) will be simplified. So, the first term (after numerous mathematical 

transformations) can be written as 
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It should be pointed out, that the direct computational approach to the product of 

the functions exp( )erfc( )⋅ ⋅  computations, especially for the large arguments, can be 

inconvenient. In this place, one can propose using the approximation methods - see 

e.g. [14]. 

In the case of ( )0 0
constT T= =ξ  and ( )1 1

constT T= =ξ , the second and third 

terms in Eq. (6) are reduced to the form 
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Finally, the analytical solution of the problem (1)-(5) for the constant values 

appearing in the initial conditions can be written in the form 
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4. Results of computations 

Thermal process proceeding in the thin gold film (L = 100·10
–9

 m) subjected 

to the short-pulse laser heating is considered. Thermophysical parameters of the 

gold are the following: λ = 317 W/(mK), c·ρ = 2.4897·10
6
 J/(m

3
K), τq = 8.5·10

–12
 s, 

τT = 90·10
–12

 s [10]. The parameters of the laser pulse are equal to: I0 = 13.7 W/m
2
, 

R = 0.93, δ = 15.3·10
–12

 m, tp = 100·10
–15

 s. The initial temperature is constant 

T0 = 20°C and the initial heating rate is equal to T1 = 0 K/s. 
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In Figure 1, the temperature histories at the set of selected points in the domain 

{0,25,50,100nm}x∈  and the temperature profiles for times {0.2,0.5,1,3ps}t∈  are 

shown. 
 

 

 

Fig. 1. Temperature histories and temperature profiles  

5. Final remarks 

The exact analytical solution of the DPLM describing the heat conduction in the 

1D domain taking into account the action of the internal heat source is presented. 

This solution is obtained by combining the methods of variables separation and 

the Green’s function. 

At the stage of mathematical computations, it was assumed that the value of τT 

is greater than the value of τq (this assumption is quite acceptable in the case of 

metals). So, the presented solution is only related to the case of τT > τq. In the other 

cases (the adequate considerations are omitted here), the additional conditions 

should be taken into account and the solution has a more complicated form. 

It should be pointed out that the assumption in this solution that τT = 0 (which cor-

responds to the Cattaneo-Vernotte model) or τT = 0 and τq = 0 (the Fourier model) 

is not acceptable. 
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The interesting thing, from a practical point of view, can be the comparison 

of the results obtained by the different numerical methods used to solve the DPLE 

with the results of the analytical solution. A disadvantage of the analytical solution 

proposed is the assumption concerning the constant values of the thermal parame-

ters of the material considered. The numerical solutions allow one, in a simple way, 

to introduce the temperature-dependent parameters (when the adequate input data 

data is available). 
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