PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Zastosowanie spektroskopii w podczerwieni do badań węgli i materiałów węglowych

Autorzy
Identyfikatory
Warianty tytułu
EN
The application of infrared spectroscopy to study coals and coal materials
Języki publikacji
PL
Abstrakty
PL
Celem niniejszej pracy było podsumowanie aktualnego stanu wiedzy na temat wykorzystania spektroskopii w podczerwieni do badania węgli i materiałów węglowych. Spektroskopia w podczerwieni jest jedną z najbardziej przydatnych metod stosowanych w analizie instrumentalnej do badań węgli i materiałów węglowych. Pozwala w sposób nieniszczący badać strukturę chemiczną charakteryzowanych obiektów. Metoda ta daje możliwość wykazania obecności struktur węglowodorowych (aromatycznych i alifatycznych) i ugrupowań heteroatomowych (głównie tlenowych) jak również wykrywania obecności minerałów. Obecnie jest jedną z najskuteczniejszych technik umożliwiających scharakteryzowanie węgla, a tym samym jest niezwykle ważna przy opracowaniu procedur przetwarzania węgla (spalania, produkcji koksu itp.). Omówiono trzy techniki spektroskopii IR: technikę odbicia rozproszonego DRIFT – Diffuse Reflectance Infrared Fourier Transform Spectroscopy, technikę spektroskopii fotoakustycznej PAS – Photoacoustic Spectroscopy oraz technikę osłabionego całkowitego odbicia ATR – Attenuated Total Reflectance. W pracy szczególną uwagę zwrócono na zmiany zachodzące w trakcie procesów uwęglenia i pirolizy. Przedstawione powyżej wyniki badań wskazują, że ugrupowania występujące w organicznej masie węgli mogą zasadniczo wpływać na ich właściwości. Dlatego też analiza przebiegu zmian zawartości tych ugrupowań przy wykorzystaniu spektroskopii w podczerwieni może przyczynić się do dokładniejszego poznania przemian strukturalnych zachodzących podczas procesów takich jak piroliza czy uwęglenie.
EN
The aim of this work was to summarize the current knowledge on the use of infrared spectroscopy to study coals and coal materials. Infrared spectroscopy is one of the most useful methods of instrumental analysis used in research on coals and coal materials. It allows non-destructively to study the chemical structure of the characterized objects. This method provides a possibility to reveal the presence of hydrocarbon structures (aromatic and aliphatic) and heteroatomic functions (mainly oxygenated), as well as to detect the presence of minerals. Currently it is one of the most powerful techniques for coal characterization and thus it is of paramount importance in the elaboration of various procedures of coal processing (combustion, coke production processes, etc.). Three techniques of IR spectroscopy have been discussed: DRIFT – Diffuse Reflectance Infrared Fourier Transform Spectroscopy, PAS – Photoacoustic Spectroscopy and ATR – Attenuated Total Reflectance. In this work special attention has been paid to the changes occurring during coalification and pyrolysis. The above presented results of the studies suggest that the moieties occurring in the organic mass of coals can fundamentally affect their properties. Therefore the analysis of the course of changes in the content of these moieties using infrared spectroscopy can contribute to a more thorough understanding of the structural changes occurring during the processes like coal pyrolysis or coalification.
Czasopismo
Rocznik
Tom
Strony
48--56
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
  • Zaklad Technologii Chemicznej, Instytut Chemii, Uniwersytet Jana Kochanowskiego w Kielcach, ul. Świetokrzyska 15 G, 25-406 Kielce
Bibliografia
  • 1. Painter P.C., Snyder R.W., Starsinic M., Coleman M.M., Kuehn D.W., Davis A., Fourier transform IR spectroscopy: application to the quantitative determination of functional groups in coal and coal products: analytical characterization techniques. ACS Symposium Series, 1982, 205, s. 47.
  • 2. Painter P.C., Starsinic M., Coleman M., Determination of functional groups in coal by Fourier transform interferometry, Ferraro J.R., Basile L.J. (Eds.), Fourier Transform Infrared.
  • 3. Solomon P.R., Carangelo R.M., FTIR Analysis of Coal. 1. Techniques and Determination of Hydroxyl Concentrations. Fuel, 1982, vol. 61, s. 663.
  • 4. Osawa Y., Shih J., Infra-red Spectra of Japanese Coal: The Absorption Bands at 3450 and 1260 cm−1, Fuel, 1971, vol. 50, s. 53.
  • 5. Blom L., Edelhausen L., van Krevelen D.W., The determination of Active Hydrogen in Coal by Deuterium Exchange, Fuel, 1959, vol. 38, 537.
  • 6. Yarzab R., Abdel-Baset Z., Given P.H., Hydroxyl Contents of Coals: New Data and Statistical Analyses, Geochim. Cosmochim. Acta, 1979, Vol. 43, s. 281.
  • 7. Solomon P.R., Carangelo R.M., FTIR Analysis of Coal. 2: Aliphatic and Aromatic Hydrogen Concentration. Fuel, 1988, vol. 67, s. 949.
  • 8. Sobkowiak M., Painter P.C., A Comparison of DRIFT and KBr Pellet Methodologies for the Quantitative Analysis of Functional Groups in Coal by Infrared Spectroscopy. Energy & Fuels, 1995, vol. 9, s. 359.
  • 9. Riesser B., Starsinic M., Squires E., Davis A., Painter P.C., Determination of Aromatic and Aliphatic CH Groups in Coal by FT-IR: 2. Studies of Coals and Vitrinite Concentrates. Fuel, 1984, vol. 63, s. 1253.
  • 10. Sobkowiak M., Painter P.C., Determination of the Aliphatic and Aromatic CH Contents of Coal by FT-IR: Studies of Coal Extracts. Fuel, 1992, vol. 71, s. 1105.
  • 11. Fuller M.P., Hamedah I.H., Griffiths P.R., Lowenhaupt D.E., Diffuse Reflectance Infrared Spectroscopy of Powdered Coals. Fuel, 1982, vol. 61, s. 529.
  • 12. Walker R., Mastalerz M., Functional Group and Individual Maceral Chemistry of High Volatile Bituminous Coals from Southern Indiana: Controls on Coking. Int. J. Coal Geol., 2004, vol. 58, s. 181.
  • 13. Walker R., Mastalerz M., Brassell S., Elswick E., Hower J.C., Schimmelmann A., Chemistry of Thermally Altered High Volatile Bituminous Coals from Southern Indiana. Int. J. Coal Geol., 2007, vol. 71, s. 2.
  • 14. Li Z., Fredericks P.M., Rintoul L., Ward C.R., Application of Attenuated Total Reflectance Micro-Fourier Transform Infra-red (ATR-FTIR) Analysis to the Study of Coal Macerals: Examples from the Bowen Basin, Australia. Int. J. Coal Geol., 2007, vol. 70, s. 87-94.
  • 15. Deńca A., Strojek J.W., Współczesne Techniki Spektroskopii w Podczerwieni w Badaniach Węgla, Wiadomości Chemiczne, 1989, 43, 505-526.
  • 16. Jasieńko S., Chemia i Fizyka Węgla. Wrocław 1995, Oficyna Wydawnicza Politechniki Wrocławskiej.
  • 17. Maddams W.F., The Scope and Limitations of Curve Fitting. Appl. Spectrosc., 1980, vol. 34, s. 245.
  • 18. Smith B.C., Fundamentals of Fourier Transform Infrared Spectroscopy. CRC Press, New York, 2011.
  • 19. Fuller E.L., Smyrl N.R., Chemistry and Structure of Coals: Diffuse Reflectance IR Spectroscopy Equipment and Techniques. Fuel, 1985, vol. 64, s. 1143.
  • 20. Krzton A., Heintz O., Petryniak J., Koch A., Machnikowski J., Zimny T., Weber J.V., Study of Mesocarbon Microbeads Oxidative Modification by FT-IR Techniques. Part I. Semi-quantitative Characterization of Oxygen Species in Carbonyl IR Frequencies. Analysis, 1996, vol. 24, s. 250.
  • 21. Nosyrev I.E., Gruber R., Cagniant D., Krzton A., Pajak J., Stefanova M.D., Grishchuk S., DRIFT Spectroscopic Characterization of Coal Samples Modified by Chemical Treatments. Fuel, 1996, vol. 75, s. 1549.
  • 22. Tilley R.J.D., Colour and Optical Properties of Materials: An Exploration of the Relationship Between Light, the Optical Properties of Materials and Colour, Hoboken, NJ, 1999, John Wiley & Sons.
  • 23. TeVrucht M.L.E., Griffiths P.R., Quantitative Investigation of Matrices for Diffuse Reflectance Infrared Fourier Transform Spectrometry. Talanta, 1991, vol. 38, s. 839.
  • 24. Fuller M.P., Griffiths P.R., Infrared Microsampling by Diffuse Reflectance Fourier Transform Spectrometry. Appl. Spectrosc., 1980, vol. 34, s. 533.
  • 25. Brimmer P.J., Griffiths P.R., Angular Dependence of Diffuse Reflectance Infrared Spectra. Part III: Linearity of Kubelka-Munk Plots. Appl. Spectrosc., 1988, vol. 42, s. 242.
  • 26. McClelland J.F., Jones R.W., Bajic S.J., FT-IR Photoacoustic Spectroscopy, Chalmers J.M. and Griffiths P.R. (Eds.), Handbook of vibrational spectroscopy, Chichester, John Wiley 2002, s. 1231.
  • 27. McClelland J.F., Jones R.W., Luo S., Seaverson L.M., A Partical Guide to FTIR Photoacoustic Spectroscopy, Practical Sampling Techniques for Infrared Analysis. Coleman P.B. (Eds.), CRC Press. Boca Raton, London, New York, Washington D.C. 1992, s. 107.
  • 28. Sherman Hsu C.-P., Infrared Spectroscopy, Settle F. (Eds.), Handbook of Instrumental Techniques for Analytical Chemistry. New Jersey, Prentice Hall PTR (ECS Professional) 1997, s. 247.
  • 29. Mielczarski J.A., Denca A., Strojek J.W., 1986, Application of Attenuated Total Reflection Infrared Spectroscopy to the Characterization of Coal. Appl. Spectrosc., 1986, vol. 40, s. 998.
  • 30. Brown J.K., The Infrared Spectra of Coals. J. Chem., Soc. 1955, vol. 2, s. 744.
  • 31. Riesser B., Starsinic M., Squires E., Davis A., Painter P.C., Determination of Aromatic and Aliphatic CH Groups in Coal by FT-i.r, Fuel, 1984, vol. 63, s. 1253.
  • 32. Painter P.C., Sobkowiak M., Youtcheff J., FT-i.r. Study of Hydrogen Bonding in Coal. Fuel, 1987, vol. 66, s. 973.
  • 33. Kuehn D.W., Snyder R.W., Davis A., Painter P.C., Characterization of Vitrinite Concentrates. 1. Fourier Transform Infrared Studies. Fuel, 1982, vol. 61, s. 682.
  • 34. Tooke P.B., Grint A., Fourier Transform Infra-red Studies of Coal Fourier Transform Infra-red Studies of Coal. Fuel, 1983, vol. 62, s. 1003.
  • 35. Jasieńko S., Matuszewska A., John A., Properties and structure of hard coals from borehole Niedobczyce IG-1 nn the Rybnik Coal District, Upper Silesian Coal Basin, their petrographic and group constituents. 2. Variations in petrographic composition of the coals along the depth of borehole and alterations in structure of the coals characterized by vitrinites spectroscopic analyses (X-ray, IR), Fuel Proces. Technol., 1995, vol. 41, s. 221.
  • 36. Machnikowska H., Krzton A., Machnikowski J., The Characterization of Coal Macerals by Diffuse Reflectance Infrared Spectroscopy. Fuel, 2002, vol. 81, s. 245.
  • 37. Niekerk D., Pugmire R.J., Solum M.S., Painter P.C., Mathews J.P., Structural Characterization of Vitrinite-rich and Inertinite-rich Permian-aged South African Bituminous Coals. Int. J. Coal Geol., 2008, vol. 76, s. 290.
  • 38. Machnikowska H., Jasienko S., Swietlik U., Krzton A., Badania struktury litotypów węgli kamiennych metodą spektroskopii w podczerwieni. Karbo, 2001, vol. 6, s. 199.
  • 39. Ibarra J.V., Munoz E., Moliner R., FTIR Study of the Evolution of Coal Structure During the Coalification Process. Org. Geochem., 1996, vol. 24, s. 725.
  • 40. Cloke M., Gilfillan A., Lester E., The Characterization of Coals and Density Separated Coal Fractions Using FTIR and Manual and Automated Petrographic Analysis. Fuel, 1997, vol. 76, s. 1289.
  • 41. Gilfillan A., Lester E., Clone M., Snape C., The Structure and Reactivity of Density Separated Coal Fractions. Fuel, 1999, vol. 78, s. 1639.
  • 42. Thomasson J., Coin C., Kahraman H., Fredericks P.M., Attenuated Total Reflectance Infrared Micro spectroscopy of Coal. Fuel, 2000, vol. 79, s. 685.
  • 43. Li Z., Fredericks P.M., Rintoul L., Ward C.R., Application of Attenuated Total Reflectance Micro-Fourier Transform Infrared (ATR-FTIR) Spectroscopy to the Study of Coal Macerals: Examples from the Bowen Basin, Australia. Int. J. Coal Geol., 2007, vol. 70, s. 87.
  • 44. Sun Q., Li W., Chen H., Li B., The Variation of Structural Characteristics of Macerals During Pyrolysis. Fuel, 2003, vol. 82, s. 669.
  • 45. Deńca A., Strojek J., Zastosowanie metody całkowitego wewnętrznego odbicia w podczerwieni do badań węgli kamiennych. Koks, Smoła, Gaz, 11-12, 1987, 265.
  • 46. Okolo G.N., Neomagus H.W.J.P., Everson R.C., Roberts M.J., Bunt J.R., Sakurovs R., Mathews J.P., Chemical-structural properties of South African bituminous coals: Insights from wide angle XRD-carbon fraction analysis, ATR-FTIR, solid state 13C NMR, and HRTEM techniques. Fuel, 2015, vol. 158, s. 779.
  • 47. Krevelen D.W., Coal: Typology, Physics, Chemistry, Construction, 3rd edition, Elsevier, Amsterdam. 1993.
  • 48. Solomon P.R., Serio M., Carangelo R., Bassilakis R., Gravel D., Baillargeon M., Baudais F., Vail G., Analysis of the Argonne premium coal samples by thermogravimetric Fourier transform infrared spectroscopy. Energy & Fuels, 1990, vol. 4, s. 319.
  • 49. Petersen H.I., Rosenberg P., Nytoft H.P., Oxygen groups in coals and alginite-rich kerogen revisited. Int. J. Coal Geol., 2008, vol. 74, s. 93.
  • 50. Lucht L.M., Peppas N.A., Macromolecular structure of coals: 2. Molecular weight between crosslinks from pyridine swelling experiments. Fuel, 1987, vol. 66, s. 803.
  • 51. Larsen J.W., Green T.K., Kovac J., The nature of the macromolecular network structure of bituminous coals. J. Org. Chem., 1985, vol. 50, s. 4729.
  • 52. Larsen J.W., Shawver S., Solvent swelling studies of two low-rank coals. Energy & Fuels, 1990, vol. 4, s. 74.
  • 53. Li D., Li W., Chen H., Li B., The adjustment of hydrogen bonds and its effect on pyrolysis property of coal. Fuel Process. Technol., 2004, vol. 85, s. 815.
  • 54. Czuchajowski L., Infra-red Spectra of Carbonized Coals and Coal-like Materials and Some Absorption Changes during Subsequent Oxidation, Fuel, 40, 1961, 361.
  • 55. Nomura S., Thomas K.M., Fundamental aspects of coal structural changes in the thermoplastic phase. Fuel, 1998, vol. 77, s. 829.
  • 56. Solomon P.R., Serio M.A., Despande G.V., Kroo E., Cross-linking reactions during coal conversion. Energy & Fuels, 1990, vol. 4, s. 42.
  • 57. Wornat M.J., Sarofim A.F., Longwell J.P., Changes in the degree of substitution of polycyclic aromatic compounds from pyrolysis of a high-volatile bituminous coal. Energy & Fuels, 1987, vol. 1, s. 431.
  • 58. Marzec A., Czajkowska S., Schulten H.-R., Mass Spectrometric and Chemometric Studies of Thermoplastic Properties of Coals. 3. Optical Anisotropy and Isotropy of Carbonized Coals. Energy & Fuels, 1994, vol. 8, s. 360.
  • 59. Larsen J.W., Gurevich I., Glass A.S., Stevenson D.S., A Method for Counting the Hydrogen-Bond Cross-Links in Coal. Energy & Fuels, 1996, vol. 10, s. 1269.
  • 60. Kidena K., Murata S., Nomura M., Studies on the Chemical Structural Change during Carbonization Process. Energy & Fuels, 1996, vol. 10, s. 672.
  • 61. Nishioka M., Larsen J.W., Association of aromatic structures in coals. Energy & Fuels, 1990, vol. 4, s. 100.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8eb1d08-2102-4cbd-a502-d815bdec16ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.