PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on magnetic regulation characteristics of axial-radial flux type permanent magnet synchronous machine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the fixed rotor magnetic field, the main magnetic flux of conventional permanent magnet synchronous motors (PMSMs) cannot be flexibly adjusted. Recently, the axial-radial flux type permanent magnet synchronous machine (ARFTPMSM) based on the hybrid excitation concept is proposed, which provides a new method for the speed and magnetic field regulations for PMSMs. To analyze the mechanism of magnetic field variation inside the ARFTPMSM, in this paper, three – dimensional finite element models for electromagnetic field calculation of the ARFTPMSM are established. On this basis, the influence of the axial device on the motor is discussed, and the mechanism of flux regulation is explained. By the quantitative calculation of air-gap flux density and the noload back-electromotive force (EMF), the flux regulation capability of the ARFTPMSM is verified. In addition, the effect of the excitation magnetomotive force on the magnetic field harmonics is analyzed combined with the winding theory, and the influence of the axial magneto-motive force (MMF) on the torque fluctuation is obtained. The flux regulation performance of the motor and the validity of the numerical calculation analysis are verified by the experiments.
Rocznik
Strony
75--90
Opis fizyczny
Bibliogr. 16 poz., tab., wz., zdj.
Twórcy
  • Zhengzhou University of Light Industry Zhengzhou, Henan, China
autor
  • Zhengzhou University of Light Industry Zhengzhou, Henan, China
autor
  • Zhengzhou University of Light Industry Zhengzhou, Henan, China
autor
  • Institute of Electrical Engineering of Chinese Academy of Sciences Beijing, China
autor
  • Wolong Electric Nanyang Explosion Protection Group Co., LTD. China
Bibliografia
  • [1] Hongbo Qiu, Xifang Zhao, Cunxiang Yang, Ran Yi, Yanqi Wei, Influence of permanent magnet parameters on output performance of a High-speed permanent-magnet generator, IEEJ Transactions on Electrical and Electronic Engineering, vol. 14, no. 8, pp. 1254–1261 (2019), DOI: 10.1002/tee.22925.
  • [2] Zhang L., Fan Y., Lorenz R., Cui R., Li C., Cheng M., Design and analysis of a new five-phase brushless hybrid-excitation fault-tolerant motor for electric vehicles, IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3428–3437 (2017), DOI: 10.1109/TIA.2017.2685359.
  • [3] Yıldırız E., Önbilgin G., Comparative study of new axial field permanent magnet hybrid excitation machines, IET Electric Power Applications, vol. 11, no. 7, pp. 1347–1355 (2017), DOI: 10.1049/ietepa.2016.0860.
  • [4] Jang D., Problems Incurred in a Vector-Controlled Single-Phase Induction Motor, and a Proposal for a Vector-Controlled Two-Phase Induction Motor as a Replacement, IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 526–536 (2013), DOI: 10.1109/TPEL.2012.2199772
  • [5] Liu Y., Zhang Z., Wang C., Geng W., Wang H., Electromagnetic Performance Analysis of a New Hybrid Excitation Synchronous Machine for Electric Vehicle Applications, IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1–4 (2018), DOI: 10.1109/TMAG.2018.2841656.
  • [6] Gao Y., Li D., Qu R., Fan X., Li J., Ding H., A novel hybrid excitation flux reversal machine for electric vehicle propulsion, IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 171–182 (2018), DOI: 10.1109/TVT.2017.2750206.
  • [7] Zhang Z., Ma S., Dai J., Yan Y., Investigation of hybrid excitation synchronous machines with axial auxiliary air-gaps and non-uniform airgaps, IEEE Trans. Ind. Appl., vol. 50, no. 3, pp. 1729–1737 (2014), DOI: 10.1109/TIA.2013.2282937.
  • [8] Li L., Cao J., Kou B., Yang S., Pan D., Zhu H., Design of Axial and Radial Flux HTS Permanent Magnet Synchronous Motor’s Rotor, IEEE Transactions on Applied Superconductivity, vol. 20, no. 3, pp. 1060–1062 (2010), DOI: 10.1109/TASC.2010.2042939.
  • [9] Mbayed R., Salloum G., Monmasson E., Gabsi M., Hybrid excitation synchronous machine finite simulation model based on experimental measurements, IET Electric Power Applications, vol. 10, no. 4, pp. 304–310 (2016), DOI: 10.1049/iet-epa.2015.0473.
  • [10] Weili L., Hongbo Q., Ran Y., Xiaochen Z., Liyi L., Three-Dimensional Electromagnetic Field Calculation and Analysis of Axial–Radial Flux-Type High-Temperature Superconducting Synchronous Motor, IEEE Trans. Appl. Superconductivity, vol. 23, no. 1, pp. 5200607 (2013), DOI: 10.1109/TASC.2012.2232923.
  • [11] Aoyama M., Noguchi T., Motohashi Y., Proposal of self-excited wound-field magnetic-modulated dualaxis motor for hybrid electric vehicle applications, IET Electric Power Applications, vol. 12, no. 2, pp. 153–160 (2018), DOI: 10.1049/iet-epa.2017.0285.
  • [12] Hua H., Zhu Z.Q., Novel parallel hybrid excited machines with separate stators, IEEE Trans. Energy Convers., vol. 31, no. 3, pp. 1212–1220 (2016), DOI: 10.1109/TEC.2016.2553149.
  • [13] Amara Y., Hlioui S., Ahmed H.B., Gabsi M., Power Capability of Hybrid Excited Synchronous Motors in Variable Speed Drives Applications, IEEE Transactions on Magnetics, vol. 55, no. 8, pp. 1–12 (2019), DOI: 10.1109/TMAG.2019.2911599.
  • [14] Geng W., Zhang Z., Jiang K., Yan Y., A New Parallel Hybrid Excitation Machine: Permanent-Magnet/Variable-Reluctance Machine with Bidirectional Field-Regulating Capability, IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1372–1381 (2015), DOI: 10.1109/TIE.2014.2348936.
  • [15] Weili L., Wang Jing, Xiaochen Z., Kou Baoquan, Loss calculation and thermal simulation analysis of high-speed PM synchronous generators with rotor topology, 2010 International Conference on Computer Application and System Modeling (ICCASM), Taiyuan, pp. 612–616 (2010), DOI: 10.1109/ICCASM.2010.5622209.
  • [16] Bianchi N., Dai Prè M., Luigi Alberti, Theory and Design of Fractional-Slot PM Machines, CLEUP, Padova (2007)
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8ea4ca0-d0b7-488a-a0b7-af14b217dff8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.