PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal Stability of AA1050 Aluminum Alloy after Equal Channel Angular Pressing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The annealing behavior of AA1050 aluminum alloy deformed by equal-channel angular pressing (ECAP) was studied experimentally. The material was subjected to extrusion through die with channels intersecting at an 90° angle. Samples were pressed for up to 8 passes using route BC, then cut into slices and subsequently annealed for 1 hour at temperatures from 100°C to 350°C. Hardness measurements were performed on each slice. Microstructure of material was analyzed in the longitudinal section by means of Electron Backscatter Diffraction system in a scanning electron microscope (EBSD/SEM). From the obtained sets of Kikuchi diffraction patterns orientation maps and Image Quality maps were determined. Grain size, disorientation distributions and crystallographic texture were also estimated. ECAP caused significant improvement of hardness, with stabilization after 4 passes. Refinement of microstructure was obtained with the increasing amount of passes. Material properties were stable during annealing at temperatures lower than 150°C. Annealing at higher temperatures caused a decrease in hardness corresponding to an increase of the grain size.
Słowa kluczowe
Twórcy
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Science, Reymonta 25, 30-059 Cracow, Poland
autor
  • Institute of Materials Science, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Cracow, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Science, Reymonta 25, 30-059 Cracow, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Science, Reymonta 25, 30-059 Cracow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Science, Reymonta 25, 30-059 Cracow, Poland
Bibliografia
  • [1] E. O. Hall, Proc. Phys. Soc. 64, 747-753 (1951).
  • [2] N. J. Petch, J. Iron Steel Inst. 173, 25-28 (1953).
  • [3] S. J. Yoo, W.J Kim, Korean J. Met. Mater. 49, 104-111 (2011).
  • [4] R. Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51, 881-981 (2006).
  • [5] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater. 47, 579-583 (1999).
  • [6] R. Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45, 103-189 (2000).
  • [7] T. Szykowny, J. Szczutkowski, Arch. of Foundry 4, 147-154 (2004).
  • [8] M. A. Abdulstaar, E.A. El-Danaf, N.S. Waluyo, L. Wagner, Mater. Sci. Eng. A 565, 351-358 (2013).
  • [9] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Acta Mater. 45, 4733-4741 (1997).
  • [10] S. Ferrasse, V.M. Segal, K.T. Hartwig, R.E. Goforth, J. Mater. Res. 12, 1253-1261 (1997).
  • [11] R. Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, B. Baudelet, Acta Metall. 42, 2467-2475 (1994).
  • [12] I. Kim, W.S. Jeong, J. Kim, K.T. Park, D.H. Shin, Scripta Mater. 45, 575-586 (2001).
  • [13] W. J. Kim, J.K. Kim, W.Y. Chao, S.I. Hong, J.D. Lee, Mater. Lett. 51, 177-182 (2001).
  • [14] R. Bogucki, K. Sulikowska, M. Bieda, P. Ostachowski, K. Sztwiertnia, Arch. of Met. and Mater. 60, 3063 (2015).
  • [15] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, Scripta Metall. 35, 143-146 (1996).
  • [16] J. Pospiech, K. Sztwiertnia, F. Haessner, Textures and Microstructures 6, 201-2015 (1986).
  • [17] K. Sztwiertnia, J. Pospiech, F. Haessner, Textures and Microstructures 12, 233-242 (1990).
  • [18] Z. Horita, T. Fujinami, M. Nemoto, T.G. Langdon, J. Mater. Process. Technol. 117, 288-292 (2001).
  • [19] F. J. Humphreys, Acta Mater. 45, 4231-4240 (1997).
  • [20] A. Oscarsson, B. Hutchinson, B. Nicol, P. Bate, H. Ekstro¨m, Mat. Sci. Forum 157-162, 1271-1276 (1994).
  • [21] D. G. Morris, M.A. Mun˜oz, Acta Mater. 50, 4047-4060 (2002).
  • [22] W. Q. Cao, A. Godfrey, W. Liu, Q. Liu, Mater. Lett. 57, 3767-3774 (2003).
  • [23] R. D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Mater. Sci. Eng. A 238, 219-274 (1997).
  • [24] J. K. Kim, H.G. Jeong, S.I. Hong, Y.S. Kim, W.J. Kim, Scripta Mater. 45, 901-907 (2001).
  • [25] Y. H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu, Acta Mater. 52, 4589-4599 (2004).
  • [26] C. Xu, Z. Horita, T.G. Langdon, Acta Mater. 55, 203-212 (2006).
  • [27] S. Li, I.J. Beyerlein, D.J. Alexander, S.C. Vogel, Acta Mater. 53, 2111-2125 (2005).
  • [28] L. S. Tóth, K.W. Neale, J.J. Jonas, Acta Metall. 37, 2197-2210 (1989).
  • [29] A. P. Zhilyaev, D.L. Swisher, K. Oh-ishi, T.G. Langdon, T.R. McNelley, Mater. Sci. Eng. A 429, 137-148 (2006).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8e9b9ef-6cf8-4632-8500-0720a76b1110
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.