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Abstract. Engineering geodesy deals with a wide range of problems. There is also a part 
that deals with measuring displacements and deformations of engineering objects. Correct 
geodetic monitoring requires identifying the movement of points representing an engineering 
object in order to determine displacement values, taking into account the time function. 
The paper presents the results of research on kinematic models of geodetic networks in the 
aspect of using them for describing the state of vertical displacements of engineering ob-
jects located on expansive soil. The paper presents two functional models of an observation 
system: one in the form of a second rank polynomial and the other in the form of an expo-
nential function. The selected kinematic models of measurement-control geodetic networks 
were estimated with classic methods and neural networks. 

Key words: kinematic model of a geodetic network, vertical displacements, neural net-
works

INTRODUCTION

Results of geodetic measurements play an especially important role in the analysis of 
the influence of expansive soils on engineering objects. Correct geodetic measurements 
provide data describing a behaviour of engineering objects undergoing uneven settle-
ment. Geodetic monitoring consisting of measurements and their interpretation makes 
it possible to draw specific conclusions about a dynamism of changes occurring in engi-
neering objects. The basic symptom of unfavourable phenomena in engineering objects 
located on expansive soil are vertical displacements of points of the measurement-control 
network representing a particular object. The determination of a geometric qualitative  
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displacement model consists in identifying a set of mutually fixed points in which the ref-
erence system is defined [Prószyński and Kwaśniak 2006]. In recent years an importance 
of the use of kinematic models of geodetic networks for determining displacements has 
increased because of the development of measurement technologies and algorithms for 
processing experimental data. 

This paper presents the results of research on kinematic models of geodetic networks 
used for describing the state of displacements of a building located on expansive soil. The 
measurements were taken by means of precise levelling in one year at one-month inter-
vals, which comprised a complete vegetation cycle of the trees surrounding the building. 
Each periodical measurement provided information about the state of stability of the ob-
ject in the form of 22 observations during which the structure of the measurement-control 
network was the same. Kinematic models in the form of a second rank polynomial and 
an exponential function were suggested as functional models of the observation system. 
Parameters of the kinematic models were estimated with classic methods and a circular 
neural network. 

ESTIMATION OF PARAMETERS OF KINEMATIC NETWORK MODELS 
WITH CLASSIC METHODS

The functional model of the kinematic network used for the analysis of deformations  
of the object will be written in general form [Kadaj 1998]:

 ( )( )A X t L t( )=  (1)

where: ( )( )A X t  – the vector function dependent on the network structure in the form of  
the matrix of the system of correction equations, ( ) [ ] n

iX t R= α ∈  – the vector of parame- 
ters, ( ) m

jL t l t R( ) ⎡ ⎤= ∈⎣ ⎦  – the vector of observations, t – the real variable (time). 

The best results in the analysis of displacements are usually obtained when the dif-
ferencing method invented by Lazzarini is used [Lazzarini 1961]. This method eliminates 
considerably the influence of systematic errors because it uses differences between obser-
vation results, which in the case of a correctly defined reference system are transformed 
into displacement values. During the preparation of vertical kinematic networks changes 
between differences are replaced with time functions. For this reason a kinematic network 
is an expansion of the classic differencing method. The procedure of calculating this kind 
of network consists of two stages: the equalization of observations and the approximation 
of functions. 

Having a discrete set of observations in the form of height differences, we used two 
functional models describing the movement of points:

 ( )H t t t2
1 1 2 3= α +α +α  (2)

 ( ) ( ) ( ) ( )H t t t ,  2 1 0 2 3exp exp 0 .0= α −α +α −α α =  (3)
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The model of a kinematic network (2) in the form of a second rank algebraic poly- 

nomial is a linear model in relation to the parameters ( )i i  1, 2, 3α = , and the model (3)  
is a non-linear model only in relation to the parameter 3α . However, if we assume  
that 3 constα = , then the model (3) is transformed into a linear model in relation to the  
parameters 1α  and 2α . This course of action is justified in the numerical realisation of  

the process of estimation of model parameters (change of the dimension of the minimisa-
tion problem). 

For a set points ( )i j, , for which the height differences ( )ijh tΔ  have been determined,  

the components of the function ( )( )A X t  which express changes of the height differences  

between the points ( )ji,  in the time t , will be written in the form:

 
( ) ( ) ( )ij ij j j i iA t h t h t, , ,α = α − α , (4)

and the satisfaction of the assumption of a minimum sum of the square of corrections to 
the observations will be written as:

 
( )( ) ( )T

ij ijV X t a t hij
2

,⎡ ⎤= α −Δ∑⎢ ⎥⎣ ⎦
. (5)

The objective function (energy function) E  is defined in the form:

 ( )( ) ( )( )TE V X t V X t= , (6)

which can be minimised by equating its gradient to zero. In this way we obtain normal 
equations in vector form. 

In the case of the model (2) of a kinematic network, which is a linear model in rela- 
tion to the vector of parameters ( )X t , the set of observation equations will be written in  
the form:

 
( )( )F X t t V X t( ( , )) h( , )α = Δ α + . (7)

Since the equations which belong to the system (7) are non-linear, it is necessary to 
linearize them. This consists in the expansion of the function F  into the Taylor sequence  
in the close vicinity of the point X t0( , )α , excluding the expressions of the second rank  
and higher. Then, the linearized system (7) will be written:

 ( )( )F X t F X t A X t X t t V X t0 0 0( ( , )) ( ( , )) ( ( , )) ( , ) h( , )α = α + α Δ α = Δ α + , (8)

where:

 
T

F X tA X t
X t

0
0

0

( ( , ))( ( , ))
( , )

∂ α
α =

∂ α
 (9)

 ( ) ( )h  t h  t h0, ,Δ α = α −   

 ( )( )h F X  t0 0 ,= α  
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The linearized system of correction equations will be written in concise form as:

 ( )( ) ( ) ( )( )A X t X  t V X th ,Δ −Δ α = . (10)

We define the criterion of the least squares by applying the condition to the vector of 
corrections in the form:

 ( )( ) ( )( ) ( )( ) ( )TV X t X t A X t X  t 2h , min= Δ −Δ α =⎡ ⎤⎣ ⎦V , (11)

and we search for a vector of parameters that minimises the abovementioned criterion 
which results from the solution of the system of normal equations:

 ( )( ) ( )( ) ( )( ) ( )T TA X t A X t X A X t  th ,Δ = Δ α . (12)

THE LEAST SQUARE METHOD IN THE NON-LINEAR ASPECT

When parameters of the model of a kinematic network described by the dependence (2) 
are estimated with the use of the least square method in the non-linear aspect, the method 
of formulating observation equations remains unchanged (7), as well as the basic assump-
tion of the least square method, i.e.

 [ ] ( )( ) ( )( )TF X t t V X t X t2( ( , )) h( , ) minα −Δ α = =V . (13)

The definition of the objective function (6), which will be minimised by solving the  

normal equations written in the form EE
X

0∂
∇ = =

∂
 also remains unchanged. The func-

 
tion ∇E can be minimised by means of one of the methods of linear algebra (the Jacoby  
method, the Gauss-Seidel method or Gaussian elimination). The basic algorithm of the 
non-linear least square method is the Cartesian Descent method, which is based on the 
algorithm of the generalised Seidel process [Adamczewski 2002].

As has been mentioned before, the model in the exponential form (3) is a non-linear  
model in relation to the parameter α3. For this reason, the change of height ΔH of the  
i-th point can be written in the form of the general dependence:

 ( )( )H H X tΔ = Δ . (14)

At this point it is necessary to mention that the components of the vector α1 and α2 
represent the values of the displacements of the point, and the component α3 represents 
its relative speed. 

Taking into account the time t, we will write the change of height of the i-th point as: 

 
( )( ) ( ) ( )i i i i i iH X t  t  t1 1 0 2 2 3, ,Δ = α ϕ α +α ϕ α , ( )i n1,2, ,= K  (15)

where: ( ) ( )i i  t  1 0 0, 1, 0ϕ α = α = , ( ) ( )i i i t t2 3 3, expϕ α = −α . When the change of height  
differences is defined in this way, the component of the vector of the non-linear func- 
tions ( )( )A X t , which expresses the height differences between the points ( )i  j,  in the  
time, t takes the form: 
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( ) ( ) ( )j j j j j jij i i i j i i i iA   , t    , t H    t H    t1 2 3 1 2 3 1 2 3 1 2 3, , , , , , , , , , ,α α α α α α = α α α − α α α .    (16)

Assuming that 3 constα = , we minimise the objective function (13) in relation to the  
parameters 1α  and 2α  with the linear algebra method, i.e. ( )1,2 3á = α α . We designate  
the value of the local minimum obtained in this way as ( )3Ω α , then we will write the  
form of the functional as: 

 ( ) [ ]F  3 3á ,Ω α = α . (17)

The non-linear estimator of the vector of parameters 3á̂  will be determined with the 
algorithm of the steepest descent, which is obtained by restricting the expansion of the  
function ( ) ( )F  3 3á ,Ω α = α  to linear approximation in any close vicinity of the known  
solution ( )nR2

3α ∈ , and on condition that the iteration process is convergent. 

ESTIMATION OF PARAMETERS OF KINEMATIC MODELS  
WITH ARTIFICIAL NEURAL NETWORKS 

Because of their non-linear character, artificial neural networks represent a sophisticated 
modelling technique and are regarded as Computational Intelligence methods. The func-
tions for which a network can be used make it possible to obtain good results in practi-
cal applications such as: approximation, interpolation, recognition and classification of 
standards, compression, prediction and many others. In these and other applications, the 
neural network is a universal approximation system, which can realise a multi-variable 
non-linear function in the form:

 ( )y f X=  (18)
where X  denotes the input vector, and y  the vector function realised in the whole inde-
finiteness set. 

Solving systems of linear equations is the basic problem in a number of fields of sci-
ence and technology. The model of the kinematic network under discussion is a linear  
model in relation to the vector of parameters ( )X t  in the form:

 ( )( ) ( )A X t L t=  (19)

where: ( )( ) m nA X t R ,∈  – the matrix of coefficients in the configuration of the system of  
corrections ( )m n> , ( ) mL t R∈  – the vector of observations. Neural networks estimate  
model parameters by minimising the energy function E  defined as [Gil 2006]:

 
( ) ( )( )

m
i

i
E X v X t

1=
= ω⎡ ⎤∑ ⎣ ⎦, (20) 

where the function ( )( )iv X tω⎡ ⎤⎣ ⎦  represents a convex function in relation to the vector of  
parameters ( )X t  and is called the weight function. Its derivative in relation to the correc-

 
tion ( )( )iv X t  is called the activation function. 
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Gauss-Markov models (linear models) with a specific redundancy are estimated with 
the least square method with the assumption that observation errors are in normal distribu-
tion. In the case of over-determined systems of linear equations, we do not expect the equa-
tion (20) to be satisfied, but we want the square of the norm of the vector of corrections:

 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )TTV X t V X t A X t X t L A X t X t L= − −  (21)

to satisfy the Gaussian stipulation (Cf. (13)). 

It is possible to solve the problem of the minimisation of the objective function (21) 
with gradient methods. If we use the steepest descent method, the solution of the opti-
misation problem boils down to solving a system of differential equations, written in  
a matrix form as [Osowski 2006]:

 
( ) ( )TdX E X A AX L

dt
= −η∇ = −η − , (22)

where η denotes the training coefficient of the neural network, and the gradient of the  
objective function is ( )E X :∇

 

( ) ( )
T

T

n

E E EE X A AX L
X X X1 2

, , ,
⎡ ⎤∂ ∂ ∂

∇ = = −⎢ ⎥∂ ∂ ∂⎣ ⎦
K .  (23)

The scalar form of the equation (22) is defined as follows:

 

n m nj
ip ik k i

p i k

dX
a a X L

dt 1 1 1= = =

⎡ ⎤⎛ ⎞= − η −∑ ∑ ∑⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
.  (24)
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Fig. 1.  The architecture of the network for solving systems of linear equations
Rys. 1. Architektura sieci do rozwiązywania układów równań liniowych
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The use of the steepest descent method makes it possible to construct the simplest neu-
ral network structure (Fig. 1) that solves the system of linear equations. In theory the steep-
est descent method is convergent. However, in practice it is characterised by slow conver- 
gence, especially in any close vicinity of the estimator X

)
 of the vector of parameters X. 

A circular neural network was used for solving the systems of over-determined linear 
equations. Its architecture is shown in Figure 1. 

NUMERICAL EXAMPLE

A dynamism of the phenomenon of uneven settlement of an engineering object, caused by 
changes in the hydrotechnical regime was observed on the basis of the values of changes 
of height differences between points of a measurement-control geodetic network. The 
scope of the measurements comprised a building located on expansive soil, which was 
represented by 11 controlled points fixed within the foundations of the building. 14 pe-
riodical measurements were taken at one-month intervals. The data obtained in this way 
were complemented with information about the range of the influence of the zone of tall 
trees (lindens, oaks), which cause changes in soil moisture in the process of transpiration. 
For the purpose of solving practical problems, it can be assumed that the zone of influence 
of a single tree on soil moisture looks like an upside-down cone with an almost circular 
base, and the radius of the circle is about 1.5 of the tree height [Collective work edited by 
Przystański 1991].

A schematic of the location of the measurement points on the building, and the loca-
tion, species and height of the freely growing trees near the building, as well as their zone 
of influence are shown in Figure 2. 

     
The number 

of trees
Numer drzewa

Tree species
Gatunek 
drzewa

Tree height [m]
Wysokość drzewa

1 linden – lipa 6.50
2 linden – lipa 7.90
3 oak – dąb 11.20
4 linden – lipa 14.40
5 linden – lipa 21.40
6 linden – lipa 17.50
7 linden – lipa 15.20
8 oak – dąb 17.60

Fig. 2. A schematic of the location of points of the  
 measurement-control network and the  
 trees 
Rys. 2. Szkic lokalizacji punktów sieci pomiaro- 
 wo-kontrolnej wraz z zestawieniem drzew
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In the research of displacements an important role is played by methods of identifying 
a reference system. The choice of methods can lead to quite different conclusions. If firm 
conclusions are to be drawn while solving practical tasks on the basis of a random sample 
with a small number of elements, technological correctness and accuracy are absolutely 
necessary. In practice, when the observation system is oversized, it is possible to evaluate 
the quality of the product, which is a geodetic network, on the basis of the parameter χ2.  
This parameter represents a global measure of the quality of the geodetic network in the 
form of the sum of the squares of corrections to the observations, obtained by equalisation 
with minimum constraints on the degrees of freedom. 

The displacement model of the controlled points was made on the basis of a defined, 
insignificantly elastic own reference system in a two-point set (points 10 and 11) beyond 
the range of the influence of changes in soil moisture. The reference system was defined 
in two stages. The first stage, regarded as preliminary, was carried out with the method of 
object adjacency, including the shortest distance procedure. In the second stage, the basic 
criterion for the determination of the reference system is the square form [VV], which 
cannot exceed the critical value for a set of points which are known to be mutually abso-
lutely fixed. In a system defined with the method of the critical value of the increment of 
the square of the norm of the vector of corrections [Gil 1995], the occurrence of a type II 
error is less probable, so this kind of system is more reliable. 

The final displacement values shown in Figure 3 were obtained by solving a system 
of linear equations using the least square operator with the assumption that the points are 
fixed. The displacement values in the form of the second rank polynomial (2), obtained 
from the model with the least square method, are shown in Figure 4.

In tasks of estimation of parameters which characterise the state of deformation of 
a geodetic network there is a linear and a non linear tendency in relation to time. They 
are written in the form of a mathematical model. Accuracy, precision and reliability are 
required from the calculation procedure. As results from the content of this paper, the 
estimation of model parameters as a concept for solving the kinematics of components of 
a geodetic network was carried out as follows: 

a. linear models:
– the least square method; the estimator obtained, called the Markov estimator, 

is an unbiased estimator with a minimum variance,
– with the use of unidirectional recurrent neural networks; the square objective 

function is the Lapunov function, and the solution of the task of minimisation 
of the criterion function [VV] is asymptotically stable,

b. the non-linear method (the hybrid method [Gibowski 2009]):
– alternate estimation of the decision variables which linearly (the linear algebra 

method) and non-linearly (the gradient method) influence the value of the estima- 
tor X

)
of the vector of parameters X. 

The abovementioned methods of minimisation of the criterion function are not mutu-
ally competitive because the mean errors of single observations before and after equalisa-
tion (Table 1 – the influence of the bias of the estimators was disregarded) are not very 
different. 

A typical representation of displacements of controlled points for a linear functional 
model of a geodetic network in the form of a second rank polynomial is shown in Figure 4.  
The representation of displacements obtained for the other functional network models 
was almost identical.
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Fig. 3.  Displacements of points from equalisation with the least square method with the assump-
tion that the points are fixed 

Rys. 3.  Przemieszczenia punktów z wyrównania metodą najmniejszych kwadratów z warunkiem 
na układ odniesienia
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Fig. 4.  A diagram of displacements of points for the model (2) – the least square method 
Rys. 4. Wykres przemieszczeń punktów dla modelu (2) –  metoda najmniejszych kwadratów

Table 1.  The mean errors of a single observation dependent on the method used for preparing 
kinematic networks models

Tabela 1. Błędy średnie pojedynczego spostrzeżenia w zależności od metody opracowania modeli 
sieci kinematycznych

Network model
Model sieci

Method used for preparing
Metoda opracowania

The mean errors m0 [mm]
Błąd średni m0

static network
sieć statyczna

the least square method
metoda najmniejszych kwadratów 0.21

second rank polynomial

 ( )H t t t2
1 1 2 3= α +α +α

 wielomian drugiego stopnia

the least square method 
metoda najmniejszych kwadratów 0.21

artificial neural networks
sztuczna sieć neuronowa 0.22

exponential function 
H t t2 1 2 3( ) exp( )= α +α −α

funkcja wykładnicza 

the hybrid method – metoda hybrydowa 0.34
artificial neural networks
sztuczna sieć neuronowa 0.36
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CONCLUSIONS

The article presents methods of calculating kinematic network models in the form of 
a second rank polynomial and an exponential function. The parameters of the models 
were estimated with the least square method, the hybrid method and a method based on 
artificial circular neural networks. It can be said that the displacements obtained from the 
kinematic network models in the form of a second rank polynomial with the least square 
method and the displacements obtained from a static network are identical. The displa-
cements obtained from the models in the form of a second rank polynomial with a neural 
network and the displacements obtained with the least square method differ by 0.01– 
0.17 mm. In the case of the functional model of a kinematic network in the form of an 
exponential function, the differences between the results obtained with a neural network 
and the hybrid method are slightly greater and amount to 0.32 mm. In general, it can be 
said that the kinematic model in the form of a second rank polynomial very well illustra-
tes the state of the displacements of points in the measurement-control network under 
analysis, which was placed on an object located on expansive soil. 
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IDENTYFIKACJA PARAMETRÓW MODELU LINIOWEGO  
I NIELINIOWEGO SIECI KINEMATYCZNEJ  
POMIAROWO-KONTROLNEJ

Streszczenie. Rozpatrując szeroki zakres zagadnień związanych z geodezją inżynieryjną, 
można wyróżnić część zajmującą się pomiarami przemieszczeń i odkształceń obiektów 
budowlanych. Poprawnie prowadzony monitoring geodezyjny wymaga identyfikacji ru-
chu punktów reprezentujących badany obiekt budowlany, w celu określenia wartości prze-
mieszczeń z uwzględnieniem funkcji czasu.
W artykule zostały przedstawione wyniki opracowań modeli kinematycznych sieci geo-
dezyjnych w aspekcie ich zastosowania do opisu stanu przemieszczeń pionowych obiektu 
budowlanego posadowionego na gruntach ekspansywnych. W pracy zaprezentowano dwa 
modele funkcjonalne układu obserwacyjnego w postaci wielomianu drugiego stopnia oraz 
funkcji wykładniczej. Estymację wybranych modeli kinematycznych sieci geodezyjnych 
pomiarowo-kontrolnych wykonano z zastosowaniem metod klasycznych oraz z wykorzy-
staniem sieci neuronowych.

Słowa kluczowe: model kinematyczny sieci geodezyjnych, przemieszczenia pionowe, 
sieci neuronowe
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