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Abstract: The problem of finding the maximum number of d-
vertices cliques (d = 3) in d-partite graph (d = 3) when graph
density q is lower than 1 is an important problem in combinatorial
optimization and it is one of many NP-complete problems. For this
problem a meta-heuristic algorithm has been developed, namely an
ant colony optimization algorithm. In this paper a new development
of this ant algorithm and experimental results are presented. The
problem of finding the maximum number of 3-vertices cliques can be
encountered in computer image analysis, computer vision applica-
tions, automation and robotic vision systems. The optimal solution
of this problem boils down to finding a set of 3-vertices cliques in a
3-partite graph and this set should have cardinality as high as possi-
ble. The elaborated ant colony algorithm can be easily modified for
d-dimensional problems, that is for finding the maximum number of
d-vertices cliques in a d-partite graph.
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1. Introduction

A graph H = (V , E) consists of a finite set V of vertices and a finite set E of
edges. A graph is d-partite if the set V can be divided into d disjoint subsets
Vi, so that V =

∑
ι Vi, and there are no edges between the vertices from the

same subset Vi. A 3-partite graph is a graph H3 = (V1, V2, V3, E), having the
property mentioned before. A triple (v1,v2,v3) is a 3-vertices clique if any two
vertices from this set are connected by an edge. In our case, we consider, in a
simplified notation, v1 ∈ V1, v2 ∈ V2 and v3 ∈ V3, each pair of these vertices
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being connected by an edge eij , where i 6= j and i, j ∈{1,2,3}. We denote by
n the number of vertices in Vi. As announced in the paper title, we would like
to find the maximum number of 3-vertices cliques in a 3-partite graph with n
vertices in eachVi, i.e. all of these cliques, in fact. Each of the sets Vi could, of
course, have a different number of vertices ni.

When the graph H is complete, this means that there are edges between
all pairs of vertices (in the case of d-partite graph: from different subsets Vi).
In such a case, there is no problem with finding the maximum number of, say,
triple cliques, as these cliques can be easily found. The problem starts to be
very hard to solve when the graph H is not complete, but has some density q<1,
which means that not every edge exists in such a graph. Any edge is generated
with probability q.

This is one of many NP complete problems, see, for instance, Karp (1972)
and Knuth (1997). In such a graph, a certain number of triple cliques can be
found very easily, but we cannot be sure whether we cannot find yet more triple
cliques, so if we look for the maximum cardinality set of triple cliques we should
use some optimization algorithm, and the ant colony algorithm is a perfect
choice for such a combinatorial optimization problem, see Dorigo (1999). There
are no exact polynomial time algorithms for this problem, but there are many
heuristic algorithms, elaborated for this purpose, see, e.g., Biro and McDemid
(2010), Eriksson (2006) and Chen (2012). Yet, the ant colony heuristics have
shown their superiority over the other ones for this problem, see Schiff (2018).
The presentation of application of the ant colony optimization algorithm for
the problem is provided in Schiff (2018, 2020). The present paper proposes a
heuristics, which is used in another part of the ant algorithm than the one that
was described in Schiff (2020).

2. The maximum number of 3-vertices cliques in the 3-

partite graph

Let H = (V1, V2, V3, E) be a 3-partite graph, that is, the one, where V1, V2

and V3 have no vertex inside of them. Thus, an edge eij = (vi, vj) connects two
vertices from different sets of vertices, vi ∈ Viand vj ∈ Vj . Graph density, q ≤1,
is the quotient of the number of edges that actually exist and the maximum
number of edges, i.e. when all the pairs of vertices (here: from different subsets
Vi) are connected, and it is interpreted as the probability of encountering an
edge (between the subsets) in the graph.

We know that in a complete 3-partite graph with n vertices in each part,
that is – in a graph with the density q = 1.0, we can easily find n 3-vertices
cliques, this means: the maximum number of 3-vertices cliques. A 3-partite
graph with such 3-vertices cliques is shown in Fig. 1. When 3-partite graph has
the density lower than 1, especially, when a 3-partite graph has the density close
to 0, it is no longer possible to find n 3-vertices cliques in it. We can easily find
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some number of 3-vertices cliques, but usually this is not the maximum number
of the cliques, which exist in such a 3-partite graph having density q.
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Figure 1. An example of a 3-partite graph with 3-vertices cliques

3. The ant method

The Ant Colony Optimization method is used for finding the best solution of
various problems by – roughly – mimicking the search-and-find behavior of
the ant colonies. In order to find such a solution ants communicate between
themselves by means of a pheromone, whose quantity is denoted t. At the
beginning of the General Ant Algorithm, which is presented here as Algorithm
1, on all elements that can form the solution to the problem solved, i ∈ M , the
maximum quantity of pheromone is deposited, t(i) = tmax. The set M is the
set of elements i, which can constitute a solution to the considered optimization
problem.

Each ant selects an element i from the set M and adds it to the set S, which
is empty at the start of algorithm execution. The set S is the current set of
elements i, which constitute together the (current version of the) solution to
the problem. Each element i from the set M is in some way related to other
elements i from the set M . When an ant selects an element i from the set M ,
some other elements i from the set M cannot be included in the set S. For
example, when an ant constructs a clique, it selects a vertex and thereafter
it can select the subsequent vertex only from the neighborhood of the already
selected vertices; hence, at the beginning, with all vertices being in the set M ,
an ant makes a start point by selecting a vertex, so only these vertices from the
set M , which are in its neighborhood, can be put into the set A.
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At the beginning, the set A is empty. This set contains only these elements,
which can be potentially selected and inserted into the set S. When a start point
is selected, only these elements from the set M are put into the set A, which
can be considered when an ant selects the next element during the construction
of solution. When some next element is selected by an ant and added to the set
S, only these vertices from the set A, which are in the neighborhood of these
vertices from the set S can be put into the new set A and the other ones should
be removed from the set A. Each ant selects the next element with probability
p(j) from among all the elements, which are in the set A and adds it to the set
S. The set Sb is one of the sets S, which have been created by ants during one
cycle, constituting the best solution to the problem in this cycle. The set Sbest

is the best one of all the sets Sb, which have been created during all the already
executed cycles.

In the case of the problem of finding the maximum number of 3-vertices
cliques in a 3-partite graph, the set M is the set of all pairs (vi, vj), where
vertices vi and vj belong to different parts of the 3-partite graph. The General
Ant Algorithm consists of two embedded loops: the first loop concerns the
counting of cycles and the second loop concerns the counting of ants. The best
solution Sb, which has been found by the ants in one cycle, is compared with
the best solution Sbest, which had been found by the ants in the previous cycles.

In each cycle also an evaporation mechanism is used: some of the pheromone
is evaporated with the rate r from all elements i ∈ M . In each cycle, as well,
an additional quantity of the pheromone, dt, is deposited on these elements i,
which constitute the solution Sb, according to the following formula:

dt = 1/[1 + ((n3cbest − n3cb)n3cbest)]

in which n3cbest is the current biggest number of 3-cliques, which has been
obtained by the ants since the beginning of the algorithm operation up to this
point, n3cb is the biggest number of 3-cliques, which has been obtained by all
ants in one cycle.

When both loops have been terminated, the best solution is returned. At the
beginning of each inner loop a start point is prepared for each ant. From such
a start point each ant begins to create a solution to the optimization problem
and then, in the while loop, each ant selects a next element j from the set M
with the probability p(j) and puts it into its solution set S. The probability
p(j) can be expressed by the formula

p(j) =
tjnj∑
j(tjnj)

(1)

where tj– is the quantity of the pheromone deposited on element j (1 ≤ j ≤
max), “max” being the maximum number of available elements, from which a
selection can be made, from the set M at the start and then from the set A
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in the loop while, nj is a parameter, expressing the desirability of including an
element j from the set A into the solution the set S.

Algorithm 1 The General Ant Algorithm

for all i ∈ M: t(i) = tmax

for all cycles
for all ants
make a start point
while (a solution S is not completed ) do
check which elements are available to be selected, put them into a set A
select a next element from a set A with a probability p(j)
add a selected element to a set S

save in the Sb the best solution, which has been found by the ants in a cycle

if Sb is better than Sbest then save the Sb as the Sbest : Sbest = Sb

for all i : t(i) = t(i) + r ∗ t
dt = f (Sb)

if i∈ Sb then t[i] = t(i) + dt
return Sbest

4. The proposed ant algorithm

The structure of the proposed algorithm can be divided into two parts. In the
first part ants are looking for the maximum matching in a bi-partite graph.
Ants use the pheromone and a heuristic to find the optimal solution, that is –
the maximal matching in a bi-partite graph. The heuristics they use concerns
the number of vertices from the third part of a 3-partite graph. This means that
this heuristics lets us to find not only the maximum matching in a bi-partite
graph, but also such a maximum matching in a bi-partite graph, which has the
maximum number of 3-vertices cliques that can be created with vertices from
the third part of a 3-partite graph.

The bi-partite graph is a subgraph of the three-partite graph. The maximum
matching in a bi-partite graph consists of edges, which connect vertices vi from
the set Vi and vj from the set Vj . Such an edge (vi, vj) can belong to different 3-
cliques, which means that such two vertices (an edge) can, together with some
vertices form the third part of the given graph, constitute different 3-cliques
and the heuristic in question concerns the number of such possible 3-cliques, so
that when we have two maximal matchings in a bi-partite graph with an equal
number of edges, this heuristics lets us obtain this maximal matching, which
has the greater number of the possible 3-cliques.

Next, in the second part of the ant algorithm this maximal matching in a
bipartite graph is used by ants together with only the pheromone-based infor-
mation to find the maximum number of 3-vertices cliques in a 3-partite graph.
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All this creates the ant algorithm with heuristics in its first part, this heuris-
tics having been presented in Schiff (2020), while the ant algorithm for this prob-
lem yet without the heuristics was presented in Schiff (2018). A new feature of
the ant algorithm, as it is proposed here, is the heuristics, which is included in
the second part of the ant algorithm, and this is the aspect, by which the present
algorithm differs from that, which has been discussed in Schiff (2020), and to
which we shall refer to here as ACO1. Now, in the second part of the algorithm
ants use not only the pheromone-based information, but also a heuristics in
order to find the maximum number of 3-vertices cliques in a 3-partite graph,
and this algorithm will be further called ACO2. This heuristics is expressed as
follows:

N(vi) = 1/lzi (2)

where lz i is the number of 3-vertices cliques, in which the given vertex vi could
be included, this vertex vi belonging to the third part of a 3-partite graph, not
considered in the first phase of the algorithm. In the first phase of the algorithm
the maximum matching in bi-partite graph is obtained. The bi-partite graph is
the subgraph of the three-partite graph. Each of the vertices in the third part
of the 3-partite graph can, together with different edges from the maximum
matching in the bi-partite graph, constitute different 3-cliques, so to each vertex
vi from the third part of the 3-partite graph we can assign a number lz i. The
number lz i is the number of 3-cliques, which can be constituted by a vertex
(here: vertex vi) from the third part of the 3-partite graph with the edges from
the maximum matching in the bi-partite graph, obtained in the first phase of
the algorithm.

The function N(vi) is the desirability function, which is used in the second
phase of the ant algorithm, analogous to the coefficient nj , appearing in formula
(1), so that each ant in the second phase of the algorithm selects a vertex vk
from the third part of 3-partite graph and assigns it to the edge from maximum
matching in the bi-partite graph, which has been obtained in the first phase
of the ant algorithm, and thus each ant builds 3-vertices cliques, using the
value of this desirability function. The values of coefficients nj and N(vi) are
calculated during the functioning of the algorithm and they reflect the degree of
appropriateness of the element j or the vertex vi in the perspective of obtaining
the best solution. The higher the value of the desirability function, the more
useful the element j or the vertex vi is in getting the best solution.

5. Results of experiments

The first experiment concerns the average of the maximum number of 3-vertices
cliques obtained using the ACO1 and ACO2 algorithms for different sizes of the
problem, namely n = {50, 100, 150, 200, 250}. The ACO2 is the ant algorithm
with the heuristics, presented in this paper and the ACO1 algorithm is the ant
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algorithm, which is presented in Schiff (2020). The number n is the number
of vertices in any part of the 3-partite graph, meaning that there are the same
numbers of vertices in each part of the 3-partite graph. The average number of
3-vertices cliques is calculated from 10 experimental measurements and they are
shown in Table 1 and in Fig. 2. The parameter r is the evaporation rate, the
parameter lc is the number of cycles, the parameter lm is the number of ants
and the parameter q is the density (interpreted as probability of edge existence).

Table 1. Average numbers of cliques for different n, r =0.998, lc=20, lm=30,
q =0.05

n 50 100 150 200 250
ACO1 10.4 52.4 109.7 166.1 222.1
ACO2 10.4 52.9 114.0 172.6 227.1
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Figure 2. Average numbers of cliques for different n, r =0.998, lc=20, lm=30,
q =0.05

The next experiment was conducted for the constant size of the problem
but for variable evaporation rates, r ={0.99, 0.992, 0.994, 0.996, 0.998}, and its
results are shown in Table 2 and in Fig. 3. Then, the subsequent experiment
consisted in changing the graph density, with q ={0.01, 0.03, 0.05, 0.07, 0.09},
and its results are shown in Table 3 and in Fig. 4.

Two last experiments concerned the changes in such algorithmic parameters
as the number of cycles, lc={20, 30, 40, 50}, and the number of ants, lm={20,
30, 40, 50}, and the respective results are shown in Tables 4 and 5, and in
Figs. 5 and 6. In all of these experiments we can see that the ACO2 algorithm
performs better than ACO1.
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Table 2. Average numbers of cliques for different evaporation rates r, q =0.05,
n =200, lc=20, lm=30

r 0.998 0.996 0.994 0.992 0.990
ACO1 166.1 166.4 166.2 167.6 166.9
ACO2 172.6 171.6 171.3 172.0 172.5
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Figure 3. Average numbers of cliques for different evaporation rates r, q =0.05,
n =200, lc=20, lm=30

Table 3. Average numbers of cliques for different densities q, r =0.998, n =200,
lc=20, lm=30

q 0.09 0.07 0.05 0.03 0.01
ACO1 193.2 187.0 166.1 100.0 57.0
ACO2 193.8 189.0 172.6 101.6 57.0

Table 4. Average numbers of cliques for different numbers of cycles in the
algorithm, lc, with q =0.05, r =0.998, n =200, lm=30

lc 20 30 40 50
ACO1 166.1 167.3 167.7 169.5
ACO2 172.6 172.4 173.4 175.1



An ant algorithm for the maximum number of 3-cliques in 3-partite graphs 355

 

50

100

150

200

0.09 0.07 0.05 0.03 0.01

a
v
a
ra
g
e
  
n
u
m
b
e
r 
  
o
f 
  
cl
iq
u
e
s

q -density �� ��a��

ACO1 ACO2

Figure 4. Average numbers of cliques for different values of lm, for n =250,
lc=200, r =0.997
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Figure 5. Average numbers of cliques for different numbers of cycles, lc, with
q =0.05, r =0.998, n =200, lm=30
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Table 5. Average numbers of cliques for different numbers of ants, lm, with
q =0.05, r =0.998, n =200, lc=20

Lm 20 30 40 50
ACO1 166.1 166.1 167.0 165.7
ACO2 171.3 172.6 171.8 171.7
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Figure 6. Average numbers of cliques for different numbers of ants, lm, with
q =0.05, r =0.998, n =20, lc=20
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Finally, we present below the results of comparison of the ACO1 algorithm
with the ACO algorithm (the ant algorithm without any desirability function
introduced, see Schiff, 2018) in Table 6 for different numbers of vertices, equal
in each part of the 3-partite graph, and the results of comparison of the ACO al-
gorithm with the Apx3Dmatch-F algorithm from Chen (2012), which are shown
in Table 7.

Table 6. Average number of 3-cliques obtained for lc=100, lm=30, r =0.998
and q =0.07. Comparison of ACO and ACO1 algorithms

n 20 30 40 50 60
ACO 1.1 6.3 11.2 17.9 29.5
ACO1 1.1 6.7 12.2 19.9 32.2

Table 7. Average number of 3-cliques obtained for lc=100, lm=30, r =0.998
and q =0.07. Comparison of ACo and Apx3Dmatch-F algorithms

n 10 20 30 40 50
ACO 0.5 3.3 6.7 12.1 29.9
Apx3Dmatch-F 0.5 3.3 6.5 11.4 17.7

As we can see from Table 7, the ACO ant algorithm without any desirability
function performs better than the approximation algorithm (Apx3Dmatch-F),
while Table 6 shows that the ACO1 ant algorithm with desirability function,
which is used in the first phase of the ant algorithm, performs better than the
ACO ant algorithm without any desirability function.

6. Conclusion

Experiments, carried out and reported here, have shown that the newly proposed
ACO2 algorithm has a clear and persistent superiority over the ACO1 algorithm
for graphs with different graph density and for different sizes of the problem as
regards the number of cliques found. This new ACO2 algorithm can be easily
adapted to finding the maximum number of, more generally, d-vertices cliques
in a d-partite graph. In the ACO1 algorithm the selection probability formula
has a classical form with desirability pattern and is applied in one, first phase
of the algorithm, while in the ACO2 algorithm the selection probability formula
has again a classical form with desirability pattern, but it is applied in both
phases of the algorithm.

The maximum matching in the bi-partite graph is being obtained in the first
phase of the ant algorithm. This maximum matching contains the set of edges
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{eij}. In this first phase a desirability function, which is used in the algorithm,
is described as follows: first we calculate for each edge eij between two parts
of the 3-partite graph the number of 3-cliques, l3k, i.e. l3k is the number of
vertices from the third part of the 3-partite graph and these are the vertices,
which constitute together with the edge eij the 3-cliques we look for. Thus,
each edge eij is being assigned a number l3k. The number l3kmax is the biggest
number among the l3k, i.e. among those that have been assigned to the edges
of the maximum matching in bi-partite graph. Now, the desirability function
in the first phase of the ant algorithm is represented through the formula

N(eij ) = 1/[1 - (l3kmax - l3k)/l3k ].

This formula is used in the first phase of ACO2 and ACO1 algorithms. In
the second phase of the ACO1 algorithm there is no desirability formula, while
in the second phase of the ACO2 algorithm the desirability formula is used as
presented in this paper, as expressed through formula (2).
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