PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat Induced Pre-Treatment Technologies for Lignocellulosic Biomass. A Comparison of Different Processes and Techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to overcome several obstacles when using lignocellulosic biomass as solid fuel, different heat induced pre-treatment techniques are available. Such a pre-treatment can be realized either within a gaseous or within a hydrothermal or vapothermal atmosphere. Below, the main reactions, occurring in the respective atmosphere at temperatures below 300°C, typical for such a pre-treatment, are discussed. Different pre-treatment techniques realized at this temperature range were introduced, characterized and compared with each other. This comparison included the current state of research, the market proximity, the process parameters as well as applicable educts and product properties.
Rocznik
Strony
134--146
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
  • Hamburg University of Technology (TUHH), Institute of Environmental Technology and Energy Economics (IUE), Eissendorfer Strasse 40, 21073 Hamburg, Germany
  • Hamburg University of Technology (TUHH), Institute of Environmental Technology and Energy Economics (IUE), Eissendorfer Strasse 40, 21073 Hamburg, Germany
Bibliografia
  • 1. Acharya, B., Sule, I. & Dutta, A. (2012). A review on advances of torrefaction technologies for biomass processing. Biomass Conversion and Biorefinery, 2(4), 349–369. doi: 10.1007/s13399–012–0058-y.
  • 2. Agrokarbo (2017). Phosphor-Rückgewinnung mit HTC in China. http://www.agrokarbo.info/terranova-china/ (06.02.2019).
  • 3. Airex Energy (2019). A clean alternative to coal. http://www.airex-energy.com/en/biocoal (06.02.2019).
  • 4. Akiya, N. & Savage, P.E. (2002). Roles of Water for Chemical Reactions in High-Temperature Water. Chemical Reviews, 102(8), 2725–2750. doi: 10.1021/cr000668w.
  • 5. Alt, F. (2017). Weltweit größte Biokohleanlage in Betrieb genommen. http://www.sonnenseite.com/de/energie/weltweit-groesste-biokohleanlage-inbetrieb-genommen.html (06.02.2019).
  • 6. Álvarez, A., Nogueiro, D., Pizarro, C., Matos, M. & Bueno, J.L. (2018). Non-oxidative torrefaction of biomass to enhance its fuel properties. Energy, 158, 1–8. doi: 10.1016/j.energy.2018.06.009.
  • 7. Al-Wabel, M.I., Rafique, M.I., Ahmad, M., Ahmad, M., Hussain, A. & Usman, A.R.A. (2018). Pyrolytic and hydrothermal carbonization of date palm leaflets: Characteristics and ecotoxicological effects on seed germination of lettuce. Saudi Journal of Biological Sciences. doi: 10.1016/j.sjbs.2018.05.017.
  • 8. Antal, M.J. & Varhegyi, G. (1995). Cellulose Pyrolysis Kinetics: The Current State of Knowledge. Industrial & Engineering Chemistry Research(34), 703–717. doi: 10.1021/ie00042a001.
  • 9. Blackwood Technology B.V. (2019). Enabling the large scale use of biomass for green energy. http://www.blackwood-technology.com/ (06.02.2019).
  • 10. Bobleter, O. & Binder, H. (1980). Dynamischer hydrothermaler Abbau von Holz. Holzforschung(34), 48–51.
  • 11. Brebu, M. & Vasile, C. (2010). Thermal Degradation of Lignin – A Review. Cellulose Chemistry and Technology (44), 353–363.
  • 12. Chen, D., Zheng, Z., Fu, K., Zeng, Z., Wang, J. & Lu, M. (2015). Torrefaction of biomass stalk and its effect on the yield and quality of pyrolysis products. Fuel, 159, 27–32. doi: 10.1016/j.fuel.2015.06.078.
  • 13. Chen, W.-H., Hsu, H.-C., Lu, K.-M., Lee, W.-J. & Lin, T.-C. (2011). Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy, 36 (5), 3012–3021. doi: 10.1016/j.energy.2011.02.045.
  • 14. Christ, D., Scherzinger, M., Neuling, U. & Kaltschmitt, M. (2017). Thermochemical Conversion of Solid Biofuels: Processes and Techniques In (Ed.) R. A. Meyers, Encyclopedia of Sustainability Science and Technology (pp. 1–22). Springer New York.
  • 15. Coronella, C.J., Lynam, J.G., Reza, M.T. & Uddin, M.H. (2014). Hydrothermal Carbonization of Lignocellulosic Biomass In (Ed.) F. Jin, Application of Hydrothermal Reactions to Biomass Conversion (pp. 275–311). Springer Berlin Heidelberg.
  • 16. Cortez, J., Demard, J.M., Bottner, P. & Jocteur Monrozier, L. (1996). Decomposition of mediterranean leaf litters: A microcosm experiment investigating relationships between decomposition rates and litter quality(28), 443–452.
  • 17. Evans, R.J., Milne, T.A. & Soltys, M.N. (1986). Direct Mass-Spectrometric Studies Of The Pyrolysis Of Carbonaceous Fuels: III. Primary Pyrolysis Of Lignin. Journal of Analytical and Applied Pyrolysis (9), 207–236.
  • 18. Funke, A. (2012). Hydrothermale Karbonisierung von Biomasse: Reaktionsmechanismen und Reaktionswärme. doi: 10.14279/depositonce-3303.
  • 19. Funke, A., Reebs, F. & Kruse, A. (2013). Experimental comparison of hydrothermal and vapothermal carbonization. Fuel Processing Technology, 115, 261–269. doi: 10.1016/j.fuproc.2013.04.020.
  • 20. Funke, A. & Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts & Biorefining (4), 160–177. doi: 10.1002/bbb.
  • 21. Glasner, C., Deerberg, G. & Lyko, H. (2011). Hydrothermale Carbonisierung: Ein Überblick. Chemie Ingenieur Technik, 83 (11), 1932–1943. doi: 10.1002/cite.201100053.
  • 22. Greve, T. (2016). Hydrothermale Carbonisierung von Landschaftspflegematerial: Parameteranalyse und Methodenentwicklung in Richtung einer Prozessmodellierung.
  • 23. IEA – International Energy Agency (2017). Key World Energy Statistics.
  • 24. Tumuluru, J.S., Sokhansanj, S., Hess J.R., Wright, C.T. & Boardman R. D. (2011). A review on biomass torrefaction process and product properties for energy applications. Industrial Biotechnology, 384–409. doi: 10.1089/ind.
  • 25. Jin, W., Singh, K. & Zondlo, Z. (2013). Pyrolysis Kinetics of Physical Components of Wood and WoodPolymers Using Isoconversion Method. Agriculture (3), 12–32. doi: 10.3390/agriculture3010012.
  • 26. Kaltschmitt, M., Hartmann, H. & Hofbauer, H. (2016). Energie aus Biomasse: Grundlagen, Techniken und Verfahren. Springer Vieweg.
  • 27. Kambo, H.S. & Dutta, A. (2014). Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Applied Energy, 135, 182–191. doi: 10.1016/j.apenergy.2014.08.094.
  • 28. Karimi, K. (2015). Lignocellulose-based bioproducts. Biofuel and Biorefinery Technologies, Springer International Publishing Switzerland.
  • 29. Kruse, A. & Dahmen, N. (2018). Hydrothermal biomass conversion: Quo vadis? The Journal of Supercritical Fluids, 134, 114–123. doi: 10.1016/j.supflu.2017.12.035.
  • 30. Leemhuis, R.J. & de Jong, R.M. (1997). Biomassa: biochemische samenstelling en conversiemethoden, Petten.
  • 31. Liu, C., Wang, H., Karim, A.M., Sun, J. & Wang, Y. (2014). Catalytic fast pyrolysis of lignocellulosic biomass. Chemical Society reviews, 43 (22), 7594–7623. doi: 10.1039/c3cs60414d.
  • 32. Luque, R., Campelo, J. & Clark, J. (2011). Handbook of biofuels production: Processes and technologies. Woodhead Publishing Limited.
  • 33. Mäkelä, M., Benavente, V., & Fullana, A. (2015). Hydrothermal carbonization of lignocellulosic biomass: Effect of process conditions on hydrochar properties. Applied Energy, 155, 576–584. doi: 10.1016/j.apenergy.2015.06.022.
  • 34. Mavropoulos, A. (2017). Bioelektra: a new promising technology. https://wastelessfuture.com/bioelektra-a-new-promising-technology/ (18.01.2019).
  • 35. Minaret, J. & Dutta, A. (2016). Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel. Bioresource technology, 200, 804–811. doi: 10.1016/j.biortech.2015.11.010.
  • 36. Patwardhan, P.R. (2010). Understanding the product distribution from biomass fast pyrolysis.
  • 37. Pérez, J., Muñoz-Dorado, J., La Rubia, T. de, & Martínez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International microbiology: the official journal of the Spanish Society for Microbiology, 5 (2), 53–63. doi: 10.1007/s10123–002–0062–3.
  • 38. Quicker, P. & Weber, K. (2016). Biokohle: Herstellung, Eigenschaften und Verwendung von Biomassekarbonisaten. Springer Vieweg.
  • 39. Ramke, H.G., Blöhse, D. & Lehman, H.J. (2012). Wissenschaftlich-technische Grundlagen der Hydrothermalen Carbonisierung organischer Siedlungsabfälle: Hydrothermal Carbonization of Organic Municipal Solid Waste – Scientific and Technical Principles (9), 476–483.
  • 40. Ramke, H.-G. & Blöhse, D. (2010). Analytik von Biokohle aus Hydrothermaler Carbonisierung von Biomasse. Fachgespräch Feststoffuntersuchung 2010 – Neue Entwicklungen in der Abfallund Altlastenuntersuchung.
  • 41. Revatec GmbH (2011). Vapothermale Carbonisierung (VTC) – Revatec-Verfahren. http://revatec.de/vapothermale_carbonisierung.htm (06.02.2019).
  • 42. Reza, M.T., Lynam, J.G., Uddin, M.H. & Coronella, C.J. (2013). Hydrothermal carbonization: Fate of inorganics. Biomass and Bioenergy, 49, 86–94. doi: 10.1016/j.biombioe.2012.12.004.
  • 43. Reza, M.T., Uddin, M.H., Lynam, J.G. & Coronella, C.J. (2014). Engineered pellets from dry torrefied and HTC biochar blends. Biomass and Bioenergy, 63, 229–238. doi: 10.1016/j.biombioe.2014.01.038.
  • 44. Ribeiro, J., Godina, R., Matias, J. & Nunes, L. (2018). Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development. Sustainability, 10 (7), 2323. doi: 10.3390/su10072323.
  • 45. Scherzinger, M. (2017), Optimierung der thermischen Biomassenutzung durch Autoklavierung. Leipzig.
  • 46. Schlitt, R. & Richarts, F. Verfahren und Vorrichtung zur Carbonisierung von Biomasse mit Dampfsteuerung (EP 2410035 A1).
  • 47. Schwark, J. (2016). Vergleichende Analyse der Produkte aus HTC und VTC unter besonderer Berücksichtigung von Gärreststoff als Edukt.
  • 48. Serfass, K. (2014), Hydrothermale Carbonisierung. Stand der Technik und Anwendungsbeispiele. Kalkar, Kalkar.
  • 49. Shafie, S.A., Al-attab, K.A. & Zainal, Z.A. (2018). Effect of hydrothermal and vapothermal carbonization of wet biomass waste on bound moisture removal and combustion characteristics. Applied Thermal Engineering, 139, 187–195. doi: 10.1016/j.applthermaleng.2018.02.073.
  • 50. Stemann, J. (2013). Hydrothermale Carbonisierung: Stoffliche und energetische Kreislaufführung.
  • 51. Terres, E. (1952). Über die Entwässerung und Veredlung von Rohtorf und Rohbraunkohle. Brennstoffchemie (33), 1–12.
  • 52. Thrän, D., Witt, J., Schaubach, K., Kiel, J., Carbo, M., Maier, J., Ndibe, C., Koppejan, J., Alakangas, E., Majer, S. & Schipfer, F. (2016). Moving torrefaction towards market introduction – Technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project. Biomass and Bioenergy, 89, 184–200. doi: 10.1016/j.biombioe.2016.03.004.
  • 53. Tran, K.-Q., Luo, X., Seisenbaeva, G. & Jirjis, R. (2013). Stump torrefaction for bioenergy application. Applied Energy, 112, 539–546. doi: 10.1016/j.apenergy.2012.12.053.
  • 54. Wang, L., Barta-Rajnai, E., Skreiberg, Ø., Khalil, R., Czégény, Z., Jakab, E., Barta, Z. & Grønli, M. (2018). Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark. Applied Energy (227) 137–148. doi: 10.1016/j.apenergy.2017.07.024.
  • 55. Wannapeera, J., Fungtammasan, B., & Worasuwannarak, N. (2011). Effects of temperature and holding time during torrefaction on the pyrolysis behaviours of woody biomass. Journal of Analytical and Applied Pyrolysis, 92, 99–105. doi: 10.1016/j.jaap.2011.04.010.
  • 56. Wannapeera, J. & Worasuwannarak, N. (2012). Upgrading of woody biomass by torrefaction under pressure. Journal of Analytical and Applied Pyrolysis, 96, 173–180. doi: 10.1016/j.jaap.2012.04.002.
  • 57. Yang, H., Yan, R., Chen, H., Lee, D.H. & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781–1788. doi: 10.1016/j.fuel.2006.12.013.
  • 58. Zhou, X., Li, W., Mabon, R., & Broadbelt, L.J. (2017). A Critical Review on Hemicellulose Pyrolysis. Energy Technology, 1 (5), 52–79. doi: 10.1002/ ente.201600327.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8dc487e-fa3a-4431-8de1-79e69f4efaee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.