Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The ethanol fire hazards will become more frequent due to the new established targets for the consumption of renewable energy sources. With this in mind, this paper aims to widen the current knowledge on CFD modelling of such a fire. As previous works rely heavily on the data of small pool fire diameters (below 1 m), this research deals with ethanol pool fire on a one-meter test tray, using our own experimental data. A mathematical model was developed and solved using a commercial CFD package (ANSYS Fluent). A new hybrid RANS-LES (SBES) model was employed to calculate turbulent stresses. Generally, the simulation results showed a good fit with the experimental results for flame temperatures at different elevations. In particular, a minor discrepancy was only observed for the top thermocouple (1.9 m above the tray). The flame heights computed with the CFD model were on average higher than the experimental one. Good agreement was observed for the radiative fraction and the axial temperature profile on the plume centreline. The latter showed an almost perfect fit between the temperature profiles obtained from CFD simulations and those calculated from the plume law for temperature.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
23–--44
Opis fizyczny
Bibliogr. 35 poz., fot., tab., wykr.
Twórcy
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
autor
- Scientific and Research Centre for Fire Protection of the National Research Institute, ul. Nadwiślańska 213, 05-420 Józefów, Poland
autor
- Scientific and Research Centre for Fire Protection of the National Research Institute, ul. Nadwiślańska 213, 05-420 Józefów, Poland
autor
- Scientific and Research Centre for Fire Protection of the National Research Institute, ul. Nadwiślańska 213, 05-420 Józefów, Poland
Bibliografia
- 1. ANSYS Inc., 2021. Ansys Fluent User’s Guide. Release 2021 R2. ANSYS, Inc. Canonsburg, USA.
- 2. Attar A.A., Pourmahdian M., Anvaripour B., 2013. Experimental study and CFD simulation of pool fires. Int. J. Comput. Appl., 70, 9–15. DOI: 10.5120/12004-5790.
- 3. Babrauskas V., 1983. Estimating large pool fire burning rates. Fire Technol., 19, 251–261. DOI: 10.1007/BF02380810.
- 4. Brushlinsky N., Ahrens M., Sokolov S., Wagner P., 2020. World Fire Statistics, Report No. 25. CTIF World Fire Statistics Center. Available at: https://www.ctif.org/sites/default/files/2020-06/CTIF_Report25.pdf
- 5. Cajot L.G., Haller M., Pierre M., 2008. Projektowanie Konstrukcji Stalowych Zespolonych z Uwzględnieniem Warunków Pożarowych, DIFISEK. Poznań, 1–36 (in Polish).
- 6. Calvo Olivares R.D., Rivera S.S., Núñez Mc Leod J.E., 2015. Database for accidents and incidents in the fuel ethanol industry. J. Loss Prev. Process Ind., 38, 276–297. DOI: 10.1016/j.jlp.2015.10.008.
- 7. Chan Kim S., Lee K.Y., Hamins A., 2019. Energy balance in medium-scale methanol, ethanol, and acetone pool fires. Fire Saf. J., 107, 44–53. DOI: 10.1016/j.firesaf.2019.01.004.
- 8. Chotzoglou K.E., Asimakopoulou E.K., Zhang J., Delichatsios M.A., 2019. An experimental investigation of burning behaviour of liquid pool fire in corridor-like enclosures. Fire Saf. J., 108, 102826. DOI: 10.1016/j.firesaf.2019.102826.
- 9. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and2003/30/EC. OJ L, 140, 5.6.2009, 16. DOI: 10.3000/17252555.L_2009.140.eng.
- 10. Ebrahim Zadeh S., Beji T., Merci B., 2016. Assessement of FDS 6 simulation results for a large-scale ethanol pool fire. Combust. Sci. Technol., 188, 571–580. DOI: 10.1080/00102202.2016.1139367.
- 11. Falkenstein-Smith R., Sung K., Chen J., Hamins A., 2021. Chemical structure of medium-scale liquid pool fires.Fire Saf. J., 120, 103099. DOI: 10.1016/j.firesaf.2020.103099.
- 12. Fenimore C.P., Jones G.W., 1967. Oxidation of soot by hydroxyl radicals. J. Phys. Chem., 71, 593–597. DOI: 10.1021/j100862a021.
- 13. Fischer S.J., Hardouin-Duparc B., Grosshandler W.L., 1987. The structure and radiation of an ethanol pool fire. Combust. Flame, 70, 291–306. DOI: 10.1016/0010-2180(87)90110-6.
- 14. Gore J., Klassen M., Hamins A., Kashiwagi T., 2007. Fuel property effects on burning rate and radiative transfer from liquid pool flames, In: Cox G., Langford B. (Eds.), Fire Safety Science — Proceedings of the Third International Symposium. Taylor & Francis, London, New York. 359-404. DOI: 10.4324/9780203973493.
- 15. Hakkarainen T., Korhonen T., Vaari J., 2021. Fire safety of alcoholic beverages in retail stores. Fire Mater., 45, 1044-1050. DOI: 10.1002/fam.2956.
- 16. Hamins A., Klassen M., Gore J., Kashiwagi T., 1991. Estimate of flame radiance via a single location measurement in liquid pool fires. Combust. Flame, 86, 223–228. DOI: 10.1016/0010-2180(91)90102-H.
- 17. Heskestad G., 2016. Fire plumes, flame height, and air entrainment, In: Hurley M.J., Gottuk D., Hall J.R., Harada K., Kuligowski E., Puchovsky M., Torero J., Watts J.M., Wieczorek C. (Eds.), SFPE Handbook of fire protection engineering. Springer, New York, NY. 396–428. DOI: 10.1007/978-1-4939-2565-0_13.
- 18. Khan I.M., Greeves G., 1974. A method for calculating the formation and combustion of soot in diesel engines. In: Afgan N.H., Beer J.M. (Eds.), Heat transfer in flames. Scripta Book Co., Washington.
- 19. Lee K.B., Thring M. W., Beer J. M., 1962. On the rate of combustion of soot in a laminar soot flame. Combust. Flame, 6, 137–145. DOI: 10.1016/0010-2180(62)90082-2.
- 20. Lin C.H., Ferng Y.M., Hsu W.S., Pei B.S., 2010. Investigations on the characteristics of radiative heat transfer in liquid pool fires. Fire Technol., 46, 321–345. DOI: 10.1007/s10694-008-0071-7.
- 21. Ma T.G., Quintiere J.G., 2003. Numerical simulation of axi-symmetric fire plumes: accuracy and limitations. Fire Saf. J., 38, 467–492. DOI: 10.1016/S0379-7112(02)00082-6.
- 22. Magnussen B.F., Hjertager B.H., 1977. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp. (Int.) Combust., 16, 719–729. DOI: 10.1016/S0082-0784(77)80366-4.
- 23. Maragkos G., Merci B., 2021. Grid insensitive modelling of convective heat transfer fluxes in CFD simulations of medium-scale pool fires. Fire Saf. J., 120, 103104. DOI: 10.1016/j.firesaf.2020.103104.
- 24. Marlair G., Rotureau P., Breulet H., Brohez S., 2009. Booming development of biofuels for transport: Is fire safety of concern? Fire Mater., 33, 1–19. DOI: 10.1002/fam.976.
- 25. McGrattan K., McDermott R., Floyd J., Hostikka S., Forney G., Baum H., 2012. Computational fluid dynamics modelling of fire. Int. J. Comut. Fluid Dyn., 26, 349–361. DOI: 10.1080/10618562.2012.659663.
- 26. Newman J.S., Wieczorek C.J., 2004. Chemical flame heights. Fire Saf. J., 39, 375–382. DOI: 10.1016/j.firesaf.2004.02.003.
- 27. OriginLab Corporation, 2021. Origin Help. Smoothing. Available at: https://www.originlab.com/doc/origin-help/smoothing
- 28. Rengel B., Mata C., Pastor E., Casal J., Planas E., 2018. A priori validation of CFD modelling of hydrocarbon pool fires. J. Loss Prev. Process Ind., 56, 18–31. DOI: 10.1016/j.jlp.2018.08.002.
- 29. Schälike S., Wehrstedt K.D., Gawlowski M., Schönbucher A., 2012. Validation of submodels for CFD simulation of n-hexane pool flames including interferometry. Chem. Ing. Tech., 84, 484–490. DOI: 10.1002/cite.201100179.
- 30. Sjöström J., Amon F., Appel G., Persson H., 2015a. Thermal exposure from large scale ethanol fuel pool fires. Fire Saf. J., 78, 229–237. DOI: 10.1016/j.firesaf.2015.09.003.
- 31. Sjöström J., Appel G., Amon F., Persson H., 2015b. ETANKFIRE – Experimental results of large ethanol fuel pool fires. SP Technical Research Institute of Sweden. Borås.
- 32. Snegirev A., Markus E., Kuznetsov E., Harris J., Wu T., 2018. On soot and radiation modeling in buoyant turbulent diffusion flames. Heat Mass Transfer, 54, 2275–2293. DOI: 10.1007/s00231-017-2198-x.
- 33. Steinhaus T., Welch S., Carvel R.O., Torero J.L., 2007. Large-scale pool fires. Therm. Sci., 11, 101–118. DOI: 10.2298/TSCI0702101S.
- 34. Stewart J.R., Phylaktou H.N., Andrews G.E., Burns A.D., 2021. Evaluation of CFD simulations of transient pool fire burning rates. J. Loss Prev. Process Ind., 71, 104495. DOI: 10.1016/j.jlp.2021.104495.
- 35. Tesner P.A., Snegiriova T.D., Knorre V.G., 1971. Kinetics of dispersed carbon formation. Combust. Flame, 17, 253–260. DOI: 10.1016/S0010-2180(71)80168-2 Thomas P.H., 1963. The size of flames from natural fires. Symp. (Int.) Combust., 9, 844–859. DOI: 10.1016/S0082-0784(63)80091-0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8dc22ff-ec57-417e-99de-bfeeef484219