
JAISCR, 2011, Vol.1, No.2, pp. 97

IMPROVED STORAGE CAPACITY IN CORRELATION
MATRIX MEMORIES STORING FIXED WEIGHT CODES

Stephen Hobson and Jim Austin
Department of Computer Science,

University of York, York, UK

Abstract

In this paper we introduce an improved binary correlation matrix memory (CMM) with
better storage capacity when storing sparse fixed weight codes generated with the algo-
rithm of Baum et al. [10]. We outline associative memory, and describe the binary cor-
relation matrix memory— a specific example of a distributed associative memory. The
importance of the representation used in a CMM for input and output codes is discussed,
with specific regard to sparse fixed weight codes. We present an analysis of the benefits
of an algorithm for the generation of fixed weight codes, originally given by Baum et al.
[4]. The properties of this algorithm are briefly discussed, including possible thresholding
functions which could be used when storing these codes in a CMM; L-max and L-wta.
Finally, results generated from a series of simulations are used to demonstrate that the
use of L-wta as a thresholding function provides an increase in storage capacity of around
15% over L-max.

1 Introduction

Traditional computer memories store data in a
compartmentalised fashion, with each stored item
having a unique address. While this leads to per-
fect recall in all cases where the correct address is
known, any amount of error in the address will re-
sult in an incorrect recall. A contrasting model of
memory is distributed associative memory. In such
a model, data items are stored as pairs, with the
presentation of the first member of the pair to the
memory resulting in the recall of the second. Rather
than these associations being stored in a single lo-
cation in the memory, they are distributed across the
memory. This provides robustness in the presence
of noise on the input, and enables generalisation [3].

Such a memory serves a different purpose to
a traditional memory. While a standard computer
memory is well suited to tasks such as storing a list
of tasks or events, it is less capable of “answering
questions” [8]. Such a task would require the ques-
tion to be looked up in a list, which might contain
the location of the answer. In a distributed asso-

ciative memory, the answer is retrieved simply by
presenting the question to the input. The recall op-
eration does not require a look-up algorithm, and so
is a much more efficient operation.

A Binary Correlation Matrix Memory (CMM)
[10] is one example of a distributed associative
memory. Its storage capacity is dependent on the
data which is stored in it. More specifically, if a set
of codes exhibits high orthogonality, the noise on
the output will be low. The fixed weight code gener-
ation algorithm of Baum et al. [4] has the benefit of
generating unique codes which are well separated in
the pattern space, which makes them suited for stor-
age in a CMM. We will subsequently term the codes
generated from this algorithm Baum codes, for ease
of reference. Recall of such codes from a CMM
requires the use of a thresholding function, and it
is with the nature of this function that this paper is
concerned. L-max thresholding [1] has been shown
to be an effective thresholding function for fixed
weight codes, and has been applied to CMMs stor-
ing Baum codes [2]. However, L-max threshold-
ing fails to make use of all the constraints on Baum

–102

98 S. Hobson and J.Austin

codes. A thresholding mechanism which takes ad-
vantage of these constraints is able to provide an
improved storage capacity for a CMM which stores
Baum codes. We will introduce such a thresholding
function, named L-wta, and demonstrate that it is
effective through simulations.

2 Binary Correlation Matrix Mem-
ories

A Binary Correlation Matrix Memory (CMM)
stores the correlations between input and output
codes. The memory is a one layer fully connected
neural network. This means that the weights can be
viewed as an m× n matrix W , where m is the size
of the input vectors and n is the size of the output
vectors. An example of such a memory is shown in
Figure 1. Although it is possible to use a CMM with
non-binary weights [7], only the binary case will be
considered in this paper.

Figure 1. An example of a CMM with 8 input
neurons, 8 output neurons and binary weights.

Learning is achieved using an outer product of
the input and output. These matrices are combined
using an OR function over all input output pairs to
create the weight matrix W .

W =
N∨

i=1

xiyT
i (1)

Recall is achieved as shown in Equation. 2.

y = f [Wx] (2)

Here f is a thresholding function, which takes
the activity output Wx and converts it to a binary
vector. For example, Willshaw et al. [10] suggested
that the thresholding function could set all output
nodes with activity greater than the number of 1s in
the input pattern x to 1. The choice of this threshold
function has a profound effect on the storage capa-
bility of the network, as we shall see later.

When recalling a pattern from the memory,
the resulting vector (before thresholding) can be
viewed as a signal (the original stored pattern) and
some noise (extra activity from overlaps with other
learned codes). This is demonstrated in Equation 3.
[6]

y = yi +
m

∑
j=1, j ̸=i

cos(x j,xi)y j (3)

The term yi is the stored vector we are trying
to recall (the signal), whilst the other term is the
noise. The magnitude of the noise is dependent on
the similarity between between the input vectors x j

and xi. If the set of input vectors is an orthonormal
set, there will be no noise, and hence perfect recall.
Of course, using an orthonormal set requires that
we either have a small number of input values or a
huge number of input neurons, and so is not usually
practical. However, if we seek to maximise storage
capacity it is beneficial to maximise the orthogonal-
ity between the input codes.

3 Sparse Fixed Weight Coding

As we have just seen, in a neural memory such
as a CMM there is an intrinsic link between the data
representation used and the storage capability of the
memory. The encodings chosen for the input and
output of the memory will have an effect on the stor-
age capacity. In addition, the choice of threshold
function will also relate directly to the representa-
tion used, and will affect the ability of the memory
to accurately recall stored pairs.

Perhaps the simplest representation of all would
be the use of unary output codes (a single bit set
to 1 in n bits). This provides a storage capacity
of exactly n code pairs. Each input code will be

99IMPROVED STORAGE CAPACITY IN CORRELATION MATRIX MEMORIES . . .

stored in exactly one column of the matrix, and
given a correct input code there will be no error on
recall. However, the fault tolerance capability of
the network is lost, since the storage is no longer
distributed. It is necessary to use input and output
codes with more than one bit set to 1 to distribute
storage over the network.

Furthermore, in order to maximise the storage
capability of the network, these codes should be
sparsely coded. The number of 1s in an n bit code is
termed the weight of the code. An important prop-
erty of the use of sparse codes in a CMM is that the
memory is capable of storing k > n codes (where k
is the number of pairs stored, and n is the number of
input neurons), providing a small amount of recall
error is tolerated [9].

If codes with fixed weight are used, an alterna-
tive threshold function is available; L-max thresh-
olding [1]. This sets the l neurons with the highest
output activity to 1 and the rest to 0, where l is the
weight of the output code. For example, consider an
output vector with weight 3 and length 8. If the ac-
tivity of the output neurons is [3 1 3 2 2 0 3 1] then
L-max thresholding sets the bits in the positions of
the 3 highest values in the vector (in this case the
three 3s) to 1, and the other bits to 0, giving an out-
put of [1 0 1 0 0 0 1 0]. Casasent and Telfer [5] ex-
perimented with various output encodings, includ-
ing Binary codes, Hamming codes and fixed weight
codes, albeit with analog input codes. They found
that in the presence of noise, fixed weight codes
with L-max thresholding gave the greatest storage
capacity for a given code length.

It is important to have the ability to generate
fixed weight codes in such a fashion that the codes
generated are guaranteed to be well separated in
pattern space, giving a set of codes which max-
imises orthogonality. Baum et al. proposed an al-
gorithm which generates fixed weight codes which
have high orthogonality [4]. The code is divided
into l sections which are relatively prime1 (co-
prime) in length, with each section i having length
pi. For example, a code of length 32 where l = 3
could be divided into sections of length 16, 9 and
7. The size of l defines the weight of the code. To

generate code number c, we set the bit in position j
as follows (where x is the code to output):

xc
j = 1 if j−

i−1

∑
k=1

pk ≡ c (mod pi)

= 0 otherwise

(4)

Essentially what is happening is that a single bit
will be set to 1 in each section of the code. As sub-
sequent codes are generated, the next bit in each
section will be set to 1 instead, wrapping around
to the beginning of the section when the end is
reached. For example, Figure 2 shows a code with
n = 10 and l = 3, taking p1 = 5, p2 = 3, p3 = 2.

1 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 1
0 0 1 0 0 0 0 1 1 0
0 0 0 1 0 1 0 0 0 1
0 0 0 0 1 0 1 0 1 0
1 0 0 0 0 0 0 1 0 1
0 1 0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1 0
0 0 0 0 1 1 0 0 0 1
...

...
...

...
...

...
...

...
...

...

Figure 2. An example of the generation of Baum
codes. Here, l = 3 and p1 = 5, p2 = 3, p3 = 2,

giving a code of length 10

Using this mechanism p1× p2× . . .× ps unique
codes can be generated, which is substantially fewer
than it is possible to represent with a general fixed
weight coding scheme, which is given as (n!

(n−l)!l!).
However, the overlap between the codes is guaran-
teed to be small, which improves recall accuracy if
they are used in a CMM. Since the method is de-
terministic, we can be certain about the amount of
overlap between generated codes. With no loss of
generality we can consider a Baum code with sec-
tion lengths p1 < p2 < .. . < p3. The first p1 codes
generated will have no overlap at all. The first p1 p2
overlap by at most 1 bit (a Hamming distance of
at least 2l − 22). In their analysis Baum et al. [4]

1Two integers are relatively prime if they have no common factor other than 1. It should be noted that the problem of generating
a set of relatively prime numbers which sum to a total is not trivial. However, a discussion of methods is beyond the scope of this
paper.

2The Hamming distance between two codes is the number of bits which differ between them.

100 S. Hobson and J.Austin

state that if ∏t
i=1 pi codes are used, the minimum

Hamming distance between any two codes will be
d = 2(l − t + 1). For this reason, it is beneficial
for pi ≈ n/l, since this maximises the product be-
tween the section lengths pi, and hence the number
of codes which can be generated with minimal over-
lap.

4 Improving the Storage Capacity

In the past the algorithm of Baum et al. [4] has
been used to generate fixed weight codes, with L-
max used as the thresholding function [2]. This rep-
resents an oversight, since L-max thresholding may
produce output codes which are not possible under
the Baum algorithm. By constraining the threshold
function so that only the codes generated by the al-
gorithm are output, we show that an increased stor-
age capacity can be achieved.

It has already been mentioned that the algorithm
divides the code into a series of sections. Baum et
al. point out in the appendix to their paper that a
useful property of the algorithm is that there is ex-
actly one 1 in each section of the code. This means
that a winner-takes-all (WTA) threshold can be ap-
plied to each section of the code, rather than tak-
ing the l highest values from the whole code, as we
would with L-max [4]. This suggestion was not ex-
plored in the paper. We show here the improvement
it affords when combined with the L-max method.
This thresholding technique incorporates more in-
formation about the output encoding into the thresh-
olding function, and therefore provides a more ro-
bust thresholding. We shall call this thresholding
technique L-wta.

For example, consider an output code of size 8,
with l = 2. If this code is constructed using Baum
codes with section sizes of p1 = 5 and p2 = 3 then
this information can be used to improve the qual-
ity of recall when compared to L-max thresholding.
So, if the output activity is [1 3 4 0 2 1 0 2] then
an L-max threshold would give the output vector
[0 1 1 0 0 0 0 0]. However, given our knowledge
of the method used to construct the code we can be
certain that this output is in error, since there must
be a single bit set to 1 in the first 5 bits of the code,
and a single bit set to 1 in the final 3 bits of the
code. In order to apply L-wta to the output code
we divide the output activity into groups according

to the section sizes used, in this case [1 3 4 0 2]
and [1 0 2]. Applying WTA to both sections we get
[0 0 1 0 0] and [0 0 1], giving an output code of
[0 0 1 0 0 0 0 1].

5 Results

To demonstrate the improved storage capacity
of a CMM when using L-wta compared to L-max a
series of simulations were conducted. The storage
of a CMM is affected by the size of the input and
output codes, and also by the weight of the cod-
ing system used. For this reason L-wta technique
was compared to L-max for a variety of coding sys-
tems. In each experiment an empty CMM was cre-
ated for the appropriate code sizes. The following
steps were then undertaken.

1. Generate an input code according to the algo-
rithm of Baum et al. [4] This code will be
unique.

2. Select a random example of a Baum code.

3. Train the CMM using the generated input and
output pair.

4. Present every input which the CMM has learnt
and compare the correct output to the actual out-
put using L-max and L-wta.

5. If average error (defined below) exceeds 10% for
all thresholding techniques then exit, otherwise
return to 1.

For each experiment these steps were averaged
over runs on twenty CMMs. A different integer was
used to seed the random generator for each CMM,
resulting in differing output patterns being trained.
After each iteration the average error was calculated
for all twenty CMMs. The recall error was defined
as the percentage of recalled patterns which con-
tained an error in any bit. In order to measure the
performance of the thresholding techniques at a va-
riety of error tolerances we examine the number of
codes learnt in each memory before recall error ex-
ceeded 0.1%, 1%, 5% and 10%.

Table 1 shows the results when the size of the
input was varied, whilst size and weight of the out-
put code remained constant. Similarly, Table 2

101IMPROVED STORAGE CAPACITY IN CORRELATION MATRIX MEMORIES . . .

Table 1. Experimental results when varying the size of the input code. All tables show the number of codes
learnt before errors at given levels. Codes are given in the format length/weight. Note that in some cases
code lengths are approximate. This is due to the complexity of generating large sets of coprime numbers
which sum to a given target. Bold numbers show the percentage increase in storage capacity when using

L-wta rather than L-max.

Input Output 0.1% error 1% error 5% error 10% error
code code L-max L-wta % L-max L-wta % L-max L-wta % L-max L-wta %
64/4 256/4 70 78 11.4 115 129 12.2 153 171 11.8 179 207 15.6
128/4 256/4 139 141 1.4 197 234 18.8 289 334 15.6 345 406 17.7
256/4 256/4 259 286 10.4 424 473 11.6 600 696 16.0 719 831 15.6
512/4 256/4 496 589 18.8 814 927 13.9 1182 1369 15.8 1416 1630 15.1

Table 2. Experimental results when varying the weight of the input code.

Input Output 0.1% error 1% error 5% error 10% error
code code L-max L-wta % L-max L-wta % L-max L-wta % L-max L-wta %
512/2 256/4 260 260 0.0 282 304 7.8 482 555 15.1 577 707 22.5
512/4 256/4 496 589 18.8 814 927 13.9 1182 1369 15.8 1416 1630 15.1
512/8 256/4 1023 1036 1.3 1453 1603 10.3 1811 1989 9.8 2028 2229 9.9

512/16 256/4 1186 1267 6.8 1408 1512 7.4 1673 1824 9.0 1829 1989 8.7

Table 3. Experimental results when varying the size of the output code.

Input Output 0.1% error 1% error 5% error 10% error
code code L-max L-wta % L-max L-wta % L-max L-wta % L-max L-wta %
256/4 64/4 91 120 31.9 178 203 14.0 245 286 16.7 287 337 17.4
256/4 128/4 148 179 20.9 265 289 9.1 362 429 18.5 436 508 16.5
256/4 256/4 259 286 10.4 424 473 11.6 600 696 16.0 719 831 15.6
256/4 512/4 373 415 11.3 608 712 17.1 950 1099 15.7 1137 1327 16.7

Table 4. Experimental results when varying the weight of the output code.

Input Output 0.1% error 1% error 5% error 10% error
code code L-max L-wta % L-max L-wta % L-max L-wta % L-max L-wta %
256/4 512/2 564 709 25.7 1259 1435 14.0 1932 2138 10.7 2310 2599 12.5
256/4 512/4 373 415 11.3 608 712 17.1 950 1099 15.7 1137 1327 16.7
256/4 512/8 257 267 3.9 353 400 13.3 495 569 14.9 580 677 16.7
256/4 512/16 71 89 25.4 138 157 13.8 197 222 12.7 219 266 21.5

102 S. Hobson and J.Austin

shows the results when the weight of the input code
was varied. In both cases it can be seen that the
use of L-wta results in an increase of approximately
15% in storage capacity. L-wta appears to provide
the largest increase in storage over L-max when the
input code is sparse; that is, when the code size is
increased or the weight is decreased. This advan-
tage appears less pronounced as the amount of out-
put error increases.

The case is similar when examining Tables 3
and 4, which show that the effect of output sparsity
on the effectiveness of the technique is less clear.
However, the storage capacity when using L-wta is
consistently a considerable improvement over that
achieved using L-max.

Figure 3. Two comparisons of the storage
capabilities of a CMM when using L-max and

L-wta. Dotted lines show the standard deviation of
average recall error between runs of the

experiment. (top) Input codes had size 256 and
weight 4. Output codes had size 512 and weight 4.
(bottom) Input codes had size 512 and weight 16.

Output codes had size 256 and weight 4.

The graph in Figure 3 shows two examples of
the performance of the two thresholding techniques
as codes are trained into the memories. It can
clearly be seen that as the memory becomes increas-
ingly saturated (a large proportion of the bits in the
memory are set to 1), the use of L-wta provides an
increasing benefit over L-max thresholding.

6 Summary

In summary, it has been demonstrated in this
paper that when using codes generated by the algo-
rithm of Baum et al. [4] L-wta provides an increase
in storage capacity over thresholding using L-max,
provided some error is tolerated. This increase in
storage capacity is generally in the order of 15%,
but has been observed to be as high as 30%.

Acknowledgements

The authors would like to acknowl-
edge the use of the White Rose Grid
(http://www.wrg.york.ac.uk/) in conducting the
simulations presented in this paper.

References
[1] J. Austin, T. Stonham, Distributed associative

memory for use in scene analysis, Image and Vi-
sion Computing 5, 251–260, 1987.

[2] J. Austin, J. V. Kennedy and K. Lees, A neural
architecture for fast rule matching, In Artificial
Neural Networks and Expert Systems Conference,
1995.

[3] J. Austin, Associative Memories, In Handbook of
Neural Computation, E. Fiesler, R. Beale (editors),
Oxford University Press, 1997.

[4] E. B. Baum, J. Moody and F. Wilczek, Internal
representations for associative memory, Biological
Cybernetics, 59(4):217–228, 1988.

[5] D. Casasent, B. Telfer, High capacity pattern
recognition associative processors, Neural Net-
works, 5, 687–698, 1992.

[6] S. Haykin, Neural Networks, A Comprehensive
Foundation Second Edition, Prentice Hall, 1999

[7] J. Nadal, G. Toulouse, Information storage in
sparsely coded memory nets, Network, 1, 61–74,
1990.

[8] G. Palm, Neural Assemblies, Springer-Verlag,
1982.

[9] G. Palm, F. Schwenker, F.T. Sommer and A. Strey,
Neural associative memories Associative process-
ing and processors, 307–326, 1997.

[10] D. J. Willshaw, O. P. Buneman and H. C. Longuet-
Higgins, Non-holographic associative memory,
Nature, 222(7):960–962, 1969.

