PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An analysis of the mechanical properties of HTPB-propellants using DMA

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza właściwości mechanicznych paliwa na bazie HTPB z wykorzystaniem metody DMA
Języki publikacji
EN
Abstrakty
EN
The paper presents the thermomechanical properties of solid rocket propellants containing hydroxyl-terminated polybutadiene. Dynamic mechanical analysis (DMA) was used in analysing the mechanical properties of propellant for two different sample geometries (cuboid and cylindrical). Nonisothermal and isothermal analyses were carried out in two holders: dual-cantilever and compression. The glass transition temperature of soft and hard segments in the propellants, the effect of dynamic force on sample strain, the creep-relaxation process (based on which parameters in the Burgers model were calculated) were determined based on the results of the analysis.
PL
W pracy przedstawiono właściwości termomechaniczne stałego paliwa rakietowego zawierającego polibutadien zakończony grupami hydroksylowymi. Do analizy właściwości mechanicznych wykorzystano dynamiczną analizę mechaniczną (DMA) dla dwóch różnych geometrii próbek (prostopadłościennej i walcowej). Przeprowadzono badania nieizotermiczne i izotermiczne w dwóch uchwytach: podwójny wspornik i ściskający. Na podstawie przeprowadzonych badań określono: – temperaturę zeszklenia miękkich i twardych segmentów w paliwie, – wpływ siły dynamicznej na odkształcenie próbki, – proces pełzania-relaksacji (na podstawie którego obliczono parametry w modelu Burgersa).
Rocznik
Tom
Strony
81--91
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, 6 Annopol Street, 03-236 Warsaw, Poland
  • Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, 6 Annopol Street, 03-236 Warsaw, Poland
Bibliografia
  • [1] Sangtyani R., Saha H.S., Kumar A., Kumar A., Gupta M., Chavan P.V. An Alternative Approach to Improve Burning Rate Characteristics and Processing Parameters of Composite Propellant. Combust. Flame 2019, 209: 357-362.
  • [2] Vijayalakshmi R., Agawane N.T., Talawar M.B., Abdul Shafeeuulla Khan M. Examining the Compatibility of Energetic Plasticizer DNDA-5 with Energetic Binders. J. Macromol. Sci., Part A: Pure Appl. Chem. 2020, 57(1): 46-54.
  • [3] Zhou S., Zhou X., Tang G., Guo X., Pang A. Differences of Thermal Decomposition Behaviors and Combustion Properties Between CL-20-Based Propellants and HMX-Based Solid Propellants. J. Therm. Anal. Calorim. 2019, 140: 2529-2540.
  • [4] Florczak B., Bogusz R., Skupiński W., Chmielarek M., Dzik A. Study of the Effect of Nitrated Hydroxyl-Terminated Polybutadiene (NHTPB) on the Properties of Heterogeneous Rocket Propellants. Cent. Eur. J. Energ. Mater. 2015, 12(4): 841-854.
  • [5] Wang G., Xu Y., Zhang W., Gong X.A. Theoretical Study of Polyethylene Glycol Polynitrates as Potential Highly Energetic Plasticizers for Propellants. Cent. Eur. J. Energ. Mater. 2019, 16(2): 194-215.
  • [6] Matečić Mušanić S., Sućeska M. Artificial Ageing of Double Base Rocket Propellant: Effect on Dynamic Mechanical Properties. J. Therm. Anal. Calorim. 2009, 96(2): 523-529.
  • [7] Herder G., Weterings F.P., De Klerk W.P.C. Mechanical Analysis on Rocket Propellants. J. Therm. Anal. Calorim. 2003, 72(3): 921-929.
  • [8] Menard K.P. Dynamic Mechanical Analysis. A Practical Introduction. 2nd ed., CRC Press, 2008.
  • [9] Saravanakumar D., Sengottuvelan N., Narayanan V., Kandaswamy M., Varghese T.L. Burning-rate Enhancement of a High-Energy Rocket Composite Solid Propellant Based on Ferrocene-Grafted Hydroxyl-Terminated Polybutadiene Binder. J. Appl. Polym. Sci. 2011, 119: 2517-2524.
  • [10] Zalewski R., Wolszakiewicz T. Analysis of Uniaxial Tensile Tests for Homogeneous Solid Propellants under Various Loading Conditions. Cent. Eur. J. Energ. Mater. 2011, 8(4): 223-231.
  • [11] Trache D., Klapötke T.M., Maiz L., Abd-Elghany M., DeLuca L.T. Recent Advances in New Oxidizers for Solid Rocket Propulsion. Green Chem. 2017, 19(20): 4711-4736.
  • [12] Wani V., Mehilal M., Jain S., Singh P.P., Bhattacharya B. Studies on the Influence of Testing Parameters on Dynamic and Transient Properties of Composite Solid Rocket Propellants Using a Dynamic Mechanical Analyzer. J. Aerosp. Technol. Manag. 2012, 4(4): 443-452.
  • [13] Bihari B.K., Wani V.S., Rao N.P.N., Singh P.P., Bhattacharya B. Determination of Activation Energy of relaxation Events in Composite Solid Propellants by Dynamic Mechanical Analysis. Def. Sci. J. 2014, 64(2): 173-178.
  • [14] Cerri S., Bohn M.A., Menke K., Galfetti, L. Aging of HTPB/Al/AP Rocket Propellant Formulations Investigated by DMA Measurements. Propellants Explos. Pyrotech. 2013, 38(2), 190-198.
  • [15] Cerri S., Bohn M.A., Menke K., Galfetti L. Ageing Behaviour of HTPB Based Rocket Propellant Formulations. Cent. Eur. J. Energ. Mater. 2009, 6(2): 149-165.
  • [16] Fuente J.L., de la Rodríguez O. Dynamic Mechanical Study on the Thermal Aging of a Hydroxyl- Terminated Polybutadiene-Based Energetic Composite. J. Appl. Polym. Sci. 2003, 87(14): 2397-2405.
  • [17] Young R.J. Lovell P.A. Elastomers. [in:] Introduction to Polymers. 2nd ed., Springer Science+Business Media, 1991, pp. 300-306.
  • [18] de La Fuente J.L., Fernández-García M., Cerrada M.L. Viscoelastic Behavior in a Hydroxyl-Terminated Polybutadiene Gum and its Highly Filled Composites: Effect of the Type of Filler on the Relaxation Processes. J. Appl. Polym. Sci. 2003, 88(7): 1705-1712.
  • [19] Bihari B.K., Nellutla P.N., Rao N.P.N., Gupta M., Murthy K.P.S. A Study on Creep Behavior of Composite Solid Propellants Using the Kelvin-Voigt Model. Cent. Eur. J. Energ. Mater. 2017, 14(3): 742-753.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8d538c2-2653-46ed-a794-2e03d09de7b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.