PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Landslide survey at Cam Mountain (An Giang, Vietnam) by seismic refraction and GPR methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cam Mountain in An Giang Province, Vietnam, is a granite peak that is severely fractured and eroded on its slopes and summit. Trees cover the top of the mountain and around the side of the mountain. The roads are the primary means of transportation for indigenous people and tourists daily. Recently, there has been a phenomenon of large-sized boulders rolling down from the top of the mountain, causing an accident and killing tourists. To investigate the internal causes of landslides on a 2.3 km road stretch, geophysical profiles using GPR and seismic refraction methods were conducted to clarify the current status of geological structures beneath the road surface. The refractive seismic data analysis revealed four distinct layers based on elastic wave propagation velocity. Velocity values range from 1000 to 3000 m/s for the 2 upper layers corresponding to the weathered, broken, and highly fractured rock layers and in the lower 2 layers from 3000 to more than 4500 m/s, respectively corresponding to less fractured rock on the depth of more than 50 m. According to GPR data, the structural cross-section to an average depth of 30 m is a more complex picture. Detected 6 layers with different degrees of fracture cracking and showing different structural zones. In a few places are the drainage creeks from the mountain. These places need to be monitored regularly to have a basis for predicting landslides and rockfalls in the area of Cam Mountain. Landslides occur in geological rocks which are of different ages: claystone, mudstone, siltstone, shale, or marlstone. The rock-falls occur in more compact rocks: metamorphic or igneous rocks.
Słowa kluczowe
Rocznik
Strony
603--620
Opis fizyczny
Bibliogr. 34 poz., fot., rys., wykr.
Twórcy
  • BinhDuong University,Vietnam
  • Institute of Geography and Resource in HCM city, VAST, Vietnam
  • Institute of Geography and Resource in HCM city, VAST, Vietnam
Bibliografia
  • [1] ABEM Terraloc Mk6 Seismic System Reference Manual with Software Ver.2.12, (1994). Website: www.abem.se.
  • [2] M.G.Angeli, A. Pasuto, S.Silvano, A critical review of landslide monitoring experiences. Eng. Geol. 55, 133-147 (2000). DOI: https://doi.org/10.1016/S0013-7952(99)00122-2.
  • [3] A.P. Annan, S.W. Cosway, Ground penetrating radar survey design. Paper prepared for the Annual Meeting of SAGEEP Chicago, April 26-29, 26 pages, (1992).
  • [4] G.D.A. Avanzi, R. Giannecchini, A. Puccinelli, The influence of the geological and geomorphological settings on shallow landslides. An example in a temperate climate environment: the June 19, 1996 event in northwestern Tuscany (Italy). Eng. Geol. 73 (3), 215-228 (2004). DOI: https://doi.org/10.1016/j.enggeo.2004.01.005.
  • [5] G. Calamita, M.R. Gallipoli, E. Gueguen, R. Sinisi, V. Summa, L. Vignola, T.A. Stabile, J. Bellanova, S. Piscitelli, A. Perrone, Integrated geophysical and geological surveys reveal new details of the large Montescaglioso (southern Italy) landslide of December 2013. Eng. Geol. 311, Feb. (2023), 106984. DOI: https://doi.org/10.1016/j.enggeo.106984.
  • [6] B.-G. Chae, H.-J. Park, F. Catani, A. Simoni, M. Berti, Landslide prediction, monitoring and early warning: a concise review of state-of-the-art. Geosci J 21:1033-1070. DOI: https://doi.org/10.1007/s12303-017-0034-4, (2017).
  • [7] D.J. Daniels, D.J. Gunton, H.F. Scott, Introduction to subsurface radar, IEE Proceedings-F, Communications radar and Signal Processing 135, part F, 4, 277-392 (1988).
  • [8] J.L. Davis, A.P. Annan, Ground penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophysical Prospecting 37 (5), 531-551 (1989).
  • [9] N.H. Dung, Report of stratigraphic division and study of geological structure in the Southern Mekong Delta. Archives of the Geological Museum, Southern Federation of Geological Maps HCM City, (2002).
  • [10] N.V. Giang, Ground Penetrating Radar for dyke investigation in Vietnam. Proceedings Of the Scientific conference, The 5th ASEAN Science and Technology Week. ASEAN Sub-Committee on Meteorology and Geophysics. PP.7, Hanoi, 12-14 October (1998).
  • [11] N.V. Giang, Detection fractures and defects in the dyke by Ground Penetrating Radar. Proceeding of the NCST of Vietnam 11 (2), 95-101 (1999).
  • [12] T. Glade, P. Stark, R. Dikau, Determination of potential landslide shear plane depth using seismic refraction, A case study in Rheinhessen, Germany. Bull. Eng. Geol. Environ. 64, 151-158 (2005). DOI: https://doi.org/10.1007/s10064-004-0258-1.
  • [13] J.S. Griffiths, A.E. Mather, M. Stokes, Mapping landslides at different scales. Q. J. Eng. Geol. Hydrogeol. 48, 29-40 (2015). DOI: https://doi.org/10.1144/qjegh2014-038.
  • [14] L. Guerriero, G. Ruzza, R. Maresca, F.M. Guadagno, P. Revellino, Clay landslide movement triggered by artificial vibrations: new insights from monitoring data. Landslides 18 (8), 2949-2957 (2021). DOI: https://doi.org/10.1007/s10346-021-01685-7.
  • [15] H.M. Jol, D.G. Smith, Ground Penetrating Radar: Recent Results, Recorder (Canadian Society of Exploration Geophysicists) 17 (10), 15-20 (1992).
  • [16] D. Jongmans, S. Garambois, Geophysical investigation of landslides. A review Bulletin Société Géologique de France 178 (2), 101-112 (2007). DOI: https://doi.org/10.2113/gssgfbull.178.2.101.
  • [17] C.L. Liner, J.L. Liner, Application of GPR to a site investigation involving shallow faults. The leading EDGE 16 (11), 1649-1652 (1997).
  • [18] D.V. Linh, V.D. Chinh, L.T. Chich, The Pliocen – Quaternary tectonic stress field in South Vietnam and its influence on deformation of Precenozoic basement of Cuu Long basin. The 2-nd International Scientific Conference “Fracture Basement Reservoir” Petrovietnam. pp. 51-62. 9-10 September (2008), VungTau-VietNam.
  • [19] I. Mahmood, S.N. Qureshi, S.Tariq, L. Atique, M.F. Iqbal, Analysis of landslides Triggered by October 2005, Kashmir Earthquake. PLoSCurr 7 (2015). DOI: https://doi.org/10.1371/currents.dis.0bc3ebc5b8adf5c7fe9fd3d702d44a99.
  • [20] A. Malehmir, L.V. Socco, M. Bastani, C.M. Krawczyk, A.A. Pfaffhuber, R.D. Miller, H. Maurer, R. Frauenfelder, K. Suto, S. Bazin, K. Merz, T. Dahlin, Near-Surface Geophysical Characterization of Areas Prone to Natural Hazards: A Review of the Current and Perspective on the Future. Advances in Geophysics 57, 51-146, (2016). DOI: https://doi.org/10.1016/bs.agph.2016.08.001
  • [21] L. Pautet, W.A. Kuperma.n, L.Dorman, Using refracted shear waves for velocity estimation. Geophysical Prospecting 49 (2), 281-286 (2001). DOI: https://doi.org/10.1046/j.1365-2478.2001.00252.x.
  • [22] G. Pecoraro, M. Calvello, L. Piciullo, Monitoring strategies for local landslide early warning systems. Landslides 16, 213-231 (2019). DOI: https://doi.org/10.1007/s10346-018-1068-z.
  • [23] M. Pipan, E. Forte, F. Guangyou, I. Finetti, High resolution GPR imaging and Joint Characterization in limestone. Near Surface Geophysics 1 (2), 39-55 (2003). DOI: https://doi.org/10.3997/1873-0604.2002006.
  • [24] J.M. Reynolds, An Introduction to Applied and Environmental Geophysics, Second Edition, John Wiley&Sons Ltd., (2011).
  • [25] K.H. Roch, B. Schwatal, E. Bruckl, Potentials of monitoring rock fall hazards By GPR: considering as example the results of Salzburg. Landslides 3 (2), 87-94 (2006). DOI: https://doi.org/10.1007/s10346-005-0026-8.
  • [26] K.J. Sandmeier, REFLEX version 4.2. Copyright, (1998).
  • [27] E. Saurin, Le substratum de Saigon et la formation du delta du Mékong. C.R. Somm. Des Séances de la socíete geologique de France, Paris (1964).
  • [28] Sensors & Software, PulseEKKO100RUN, User’s Guide, Version 1.2. Technical Manual 25, (1996).
  • [29] J. Singh, M. Thakur, Landslide stability assessment along Panchkula-Morni Road, Nahan salient, NW Himalaya, India. J. Earth Syst. Sci. 128 (6), 1-5 (2019). DOI: https://doi.org/10.1007/s12040-019-1181-y.
  • [30] G. Sorbino, M.V. Nicotera, Unsaturated soil mechanics in rainfall-induced flow landslides. Eng. Geol. 165, 105-132 (2013). DOI: https://doi.org/10.1016/j.enggeo.2012.10.008.
  • [31] R.S. Tandon, V. Gupta, B. Venkateshwarlu, Geological, geotechnical and GPR investigations along Mansa Devihill bypass (MDHB) Road, Uttarakhand, India. October 2020, Landslides 17 (1-2), (2020). DOI: https://doi.org/10.1007/s10346-020-01546-9.
  • [32] W.M. Telford, L.P. Geldart, R.E. Sherif, D.A. Keys, AppliedGeophysics. Cambridge Univ. Press, Cambridge, 770 (1990).
  • [33] J.S. Whiteley, J.E. Chambers, S. Uhlemann, J. Boyd, M.O. Cimpoiasu, J.L. Holmes, C.M. Inauen, A. Watlet, L.R.Hawley-Sibbett, C. Sujitapan, R.T. Swift, J.M. Kendall, Landslide monitoring using seismic refraction tomography – The importance of incorporating topographic variations. Eng. Geol. 268, April (2020). 105525. DOI: https://doi.org/10.1016/j.enggeo.2020.105525.
  • [34] E. Yalcinkaya, H. Alp, O. Ozel, E. Gorgun, S. Martino, L. Louti, C. Bourdean, P. Bigarre, S. Coccia, Near-surface geophysical methods for investigating the Buyukcekmece landslide in Istanbul, Turkey. Journal of Applied Geophysics 134, 23-35 (2016). DOI: https://doi.org/10.1016/j.jappgeo.2016.08.01.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8d09c03-24b6-4934-a600-cca413c7188d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.