PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energetic efficiency of gear micropumps

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, results of the static mechanical analysis of a gear micropump body are presented. Numerical simulations using finite element method (FEM) were conducted using Ansys Multiphysics software. After analysis of stress and displacement distribution in the pump body, a mass optimization of construction was provided. In the optimized body, maximal value of stress reached 134 MPa. Safety factor was equal to 2.9. The highest value of displacement in the optimized body was about 0.02 mm. Maximal values of stress and displacement provide appropriate work of the micropump. Strength and stiffness criteria in the optimized pump body were achieved. For the construction of the pump body before and after optimization, energetic efficiency ratios (kef) were calculated. Optimized micropump body has more than 30% increase in kef ratio to the pump with the primary body.
Rocznik
Strony
109--115
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Machines Design and Operation, Wroclaw University of Technology, Poland
  • Institute of Machines Design and Operation, Wroclaw University of Technology, Poland
Bibliografia
  • [1] P. Casoli, A. Vacca, G.L. Berta, Optimization of relevant design parameters of external gear pumps, in: 7th International Symposium on Fluid Power, Toyama, 2008.
  • [2] P. Casoli, A. Vacca, G. Franzoni, A numerical model for the simulation of external gear pumps, in: 6th JFPS International Symposium on Fluid Power, Tsukuba, 2005.
  • [3] R. Castilla, P.J. Gamez-Montero, N. Erturk, A. Vernet, M. Coussirat, E. Codina, Numerical simulation of turbulent flow in the suction chamber of a gearpump using deforming mesh and mesh replacement, International Journal of Mechanical Sciences 52 (2010) 1334–1342.
  • [4] S. Dhar, A. Vacca, A novel CFD – axial motion coupled model for the axial balance of lateral bushings in external gear machines, Simulation Modelling Practise and Theory 26 (2012) 60–76.
  • [5] R. Dindorf, J. Wołkow, Microhydraulics, Hydraulics and Pneumatics (6/99) (1999) 16–19 (in Polish).
  • [6] R. Dindorf, J. Wołkow, Microhydraulics in Automotive Vehicles, vol. 20, Portfolio of Motorization Scientific Problems Committee, 2000, (in Polish).
  • [7] I. Ghionea, A. Ghionea, G. Constantin, CAD – CAE methodology applied to analysis of a gear pump, Proceedings in Manufacturing Systems 8 (1) (2013).
  • [8] G. Houzeaux, R. Codina, A finite element method for the solution of rotary pumps, Computers & Fluids 36 (2007) 667–679.
  • [9] W. Kollek, P. Osiński, Modelling and Design of Gear Pumps, Wroclaw University of Technology Publishing House, Wroclaw, 2009.
  • [10] W. Kollek, P. Osiński, M. Stosiak, A. Wilczyński, P. Cichoń, Problems relating to high-pressure gear micropumps, Archives of Civil and Mechanical Engineering 14 (1) (2013) 88–95.
  • [11] W. Kollek, Fundamentals of design, modeling, operating of microhydraulic elements and systems, Wroclaw University of Technology Publishing House, Wroclaw, 2011 (in Polish).
  • [12] H. Li, Ch. Yang, P. Zhou, The finite element analysis and optimizations of shells of internal gear pump based on Ansys, Fluid Power and Mechatronics (2011) 185–190.
  • [13] E. Mucchi, G. Dalpiaz, Experimental validation of a model for the dynamic analysis of gear pumps, in: 25th International Conference on Design Theory and Methodology, ASME, Portland, Oregon, USA, 2013.
  • [14] E. Mucchi, G. Dalpiaz, A. Fernandez del Rincon, Elastodynamic analysis of a gear pump. Part I: Pressure distribution and gear eccentricity, Mechanical Systems and Signal Processing 24 (2010) 2160–2179.
  • [15] E. Mucchi, A. Rivola, G. Dalpiaz, Modelling dynamic behaviour and noise generation in gear pumps: procedure and validation, Applied Acoustics 77 (2014) 99–111.
  • [16] P. Osiński, A. Deptuła, M.A. Partyka, Discrete optimalization of a gear pump after tooth root undercutting by means of multi-valued logic trees, Archives of Civil and Mechanical Engineering 13 (4) (2013) 422–431.
  • [17] P. Osiński, W. Kollek, Assessment of energetistic measuring techniques and their application to diagnosis of acoustic condition of hydraulic machinery and equipment, Archives of Civil and Mechanical Engineering 13 (3) (2013) 313–321.
  • [18] P. Osiński, High-Pressure and Low-Pulsation External Meshing Gear Pumps, Wroclaw University of Technology Publishing House, Wroclaw, 2013 (in Polish).
  • [19] P. Osiński, Modelling and Design of Gear Pumps with Modified Tooth Profile, LAP Lambert Academic Publishing, Saarbrucken, 2014.
  • [20] C. Ragunathan, C. Manoharan, Dynamic analysis of hydrodynamic gear pump performance using design of experiment stand operational parameters, IOSR Journal of Mechanical and Civil Engineering 1 (6) (2012) 17–23.
  • [21] A. Vacca, M. Guidetti, Modelling and experimental validation of external spur gear machines for fluid power applications, Simulation Modelling Practice and Theory 19 (2011) 2007– 2031.
  • [22] S. Wang, H. Sakurai, A. Kasarekar, The optimal design in external gear pumps and motors, ASME Transactions on Mechatronics 16 (5.) (2011).
  • [23] http://www.kxcad.net/ansys/ANSYS/ansyshelp/Hlp_E_ SOLID187.html.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8d0824b-6b33-4c21-9e8d-0ed2b08adde0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.