PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physical Simulation of the Mannesmann Effect in the Rolling Process

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study presents the results of laboratory testing of the phenomenon of cracking in the process of cross rolling. A new method of determining the critical value of the damage function was developed, in which a disc-shaped sample is subjected to rotational compression in a channel. In this method the Mannesmann effect was used. The laboratory tests were conducted for C45, 50HS and R260 grade steel in the temperature range 950°C-1150°C. In order to research various methods of simulating the phenomenon of cracking in the process of cross rolling, physical modelling was also employed. The model material was commercial plasticine, cooled to the temperature 0°C-20°C. Comparing the test results for both the real and model material allowed one to determine the range of the forming temperature for the model material, in which the cracking process is similar to the case of the real material.
Twórcy
autor
  • Lublin University of Technology, 38D Nadbystrzycka Str., 20-618 Lublin, Poland
autor
  • Lublin University of Technology, 38D Nadbystrzycka Str., 20-618 Lublin, Poland
Bibliografia
  • [1] Z. Pater, Walcowanie poprzeczno-klinowe, Lublin (2009).
  • [2] M. Skripalenko, B. Romantsev, S. Galkin, M. Skripalenko, L. Kaputkina, T. Huy, Metallurgist. 61 (11-12), 925-933 (2018).
  • [3] G. V. Kozhevnikova, Theory and Practice of Cross-Wedge Rolling, Minsk (2010).
  • [4] A. Ghiotti, S. Fanini, S. Bruschi, P. F. Bariani, CIRP Annals - Manufacturing Technology 58, 255-258 (2009).
  • [5] G. Liu, Z. Zhong, Z. Shen, Procedia Engineer. 81, 263-267 (2014).
  • [6] Y. Dong, K. A. Tagavi, M. R. Lovell, Z. Deng, Int. J. Mech. Sci. 42, 1233-1253 (2000).
  • [7] G. Liu, G. Ren, C. Xu, Z. Jiang, Z. Shen, J. Mech. Eng. 20 (2), 150-152 (2004).
  • [8] G. Fang, L. P. Lei, P. Zeng, J. Mater. Process. Tech. 129, 245-249 (2002).
  • [9] K. Mori, H. Yoshimura, K. Osakada, J. Mater. Process. Tech. 80-81, 700-706 (1998).
  • [10] M.-S. Joun, J. Lee, J.-M. Cho, S.-W. Jeong, H.-K. Moon, Procedia Engineer. 81, 197-202 (2014).
  • [11] H. W. Lee, G. A. Lee, D. J. Yoon, S. Choi, K. H. Na, M. Y. Hwang, J. Mater. Process. Tech. 201, 112-117 (2008).
  • [12] F.-J. Wang, Y.-H. Shuang, J.-H. Hu, G.-H. Wang, J.-C. Sun, J. Mater. Process. Tech. 214, 1597-1604 (2014).
  • [13] T. Komischke, P. Hora, G. Domani, M. Plamondon, R. Kaufann, Procedia Manufacturing 15, 176-184 (2018).
  • [14] Z. Pater, Ł. Wójcik, P. Walczuk, Advances in Science and Technology Research Journal 10, 752-757 (2011).
  • [15] M. F. Novella, A. Ghiotti, S. Bruschi, P. F. Bariani, Procedia Engineer. 81, 221-226 (2014).
  • [16] M. F. Novella, A. Ghiotti, S. Bruschi, P. F. Bariani, J. Mater. Process. Tech. 222, 259-267 (2015).
  • [17] L. Kowalczyk, Modelowanie fizykalne procesów obróbki plastycznej, Radom (1995).
  • [18] Y. H. Moon, C. J. Van Tyne, J. Mater. Process. Tech. 99, 185-190 (2000).
  • [19] J. Rasty, H. Sofuoglu, Tribol. Int. 33, 523-529 (2000).
  • [20] M. Arentoft, Z. Gronostajski, A. Niechajowicz, T. Wanheim, J. Mater. Process. Tech. 106, 2-7 (2000).
  • [21] Z. C. Sun, J. Cao, H.-L. Wu, Z.-K.Yin, Int. J. Adv. Manuf. Tech. 98, 2933-2942 (2018).
  • [22] B. Krishnamurthy, O. Bylya, K. Davey, Procedia Engineer. 207, 1075-1080 (2017).
  • [23] W. Zhou, J. Lin, T. A. Dean, L. Wang, Int. J. Mach. Tool. Manu. 126, 27-43 (2018).
  • [24] I. Balasundar, M. Sudhakara Rao, T. Raghu, Material and Design 30, 1050-1059 (2009).
  • [25] D. I. Buteler, P.C.U. Neves, L. V. Ramos, C.E.R. Santos, R. M. Souza, A. Sinatora, J. Mater. Process. Tech. 179, 50-55 (2006).
  • [26] Y.-M. Hwang, W. M. Tsai, F. H. Tsai, I Her. Int. J. Mach. Tool. Manu. 46, 1555-1562 (2006).
  • [27] J. R. Cho, W. B. Bae, Y. H. Kim, S. S. Choi, D. K. Kim, J. Mater. Process. Tech. 80-81, 161-165 (1998).
  • [28] Y. Dong, M. Lovell, K. Tagavi, J. Mater. Process. Tech. 80-81, 273-281 (1998).
  • [29] M. M. Skripalenko, E. Bazhenov, B. A. Romantsev, M. N. Skripalenko, T. B. Huy, Y. A. Gladkov, Mater. Sci. Tech. 32 (16), 1712-1720 (2016).
  • [30] Ł. Wójcik, K. Lis, Z. Pater, Open Engineering, 6 (1), 653-659 (2016).
  • [31] Ł. Wójcik, Z. Pater, Acta Mechanica et Automatic 12 (4), 286-293 (2018).
  • [32] Ł. Wójcik, Z. Pater, Hutnik Wiadomości Hutnicze 85, 362-366 (2018).
  • [33] A. Asswmpour, S. Razi, J. Mech. Eng. 4 (1), 61-69 (2003).
  • [34] V. Vazquez, T. Altan, J. Mater. Process. Tech. 98, 212-223 (2000).
  • [35] A.E.M. Pertence, P. R. Cetlin, J. Mater. Process. Tech. 84, 261-267 (1998).
  • [36] A. Segawa, T. Kawanami, J. Mater. Process. Tech. 47, 375-384 (1995).
Uwagi
EN
The research has been conducted under the project No. 2017/25/B/ST8/00294 financed by the National Science Centre, Poland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8c99a21-8805-45c7-a7e6-7de2e5095936
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.