PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of hydroxypropyl methyl cellulose on rheological properties of cement-limestone paste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of hydroxypropyl methylcellulose (HPMC) on the rheology and viscoelasticity of cement-limestone paste were evaluated, as was the mechanism of HPMC from the viewpoint of zeta potential and adsorption amount. The results revealed that the greater the content of HPMC or the viscosity of its aqueous solution, the lower the fluidity of the composite paste and therefore the higher the rheological parameters. The relation between torque and rotational velocity of cement-limestone paste is linear; nevertheless, the shear thickening degree of paste increased following the addition of HPMC, demonstrating typical viscoelastic properties. The addition of HPMC prolonged the induction duration and delayed the emergence of the exothermic peak of hydration, decreased zeta potential and conductivity, and increased the propensity of suspension particles to agglomerate. The adsorption amount of polycarboxylate superplasticizer (PCE) decreased with increasing aqueous solution viscosity and HPMC concentration due to the winding effect of HPMC’s high molecular chain structure and the competing adsorption of HPMC and PCE.
Rocznik
Strony
593--612
Opis fizyczny
Bibliogr. 54 poz., il., tab.
Twórcy
autor
  • Chongqing Institute of Foreign Studies, School of International Business and Management, Chongqing, China
autor
  • Chongqing Institute of Foreign Studies, School of International Business and Management, Chongqing, China
autor
  • Central South University, School of Civil Engineering, Changsha, China
Bibliografia
  • [1] I. Janotka, F. Puertas, M. Palacios, et al., “Metakaolin sand-blended-cement pastes: Rheology, hydration process and mechanical properties”, Construction and Building Materials, vol. 24, no. 5, pp. 791-802, 2010, DOI: 10.1016/j.conbuildmat.2009.10.028.
  • [2] J. Golaszewski and M. Golaszewska, “Properties of mortars with Calcium Sulfoaluminate cements with the addition of Portland cement and limestone”, Archives of Civil Engineering, vol. 67, no. 2, pp. 425-435, 2021, DOI: 10.24425/ace.2021.137177.
  • [3] P. Reiterman, R. Jaskulski, W. Kubissa, et al., “Assessment of rational design of self-compacting concrete incorporating fly ash and limestone powder in terms of long-term durability”, Materials, vol. 13, no. 12, art. no. 2863, 2020, DOI: 10.3390/ma13122863.
  • [4] D. Feys, R. Verhoeven, and G.D. Schutter, “Why is fresh self-compacting concrete shear thickening?”, Cement and Concrete Research, vol. 39, no. 6, pp. 510-523, 2009, DOI: 10.1016/j.cemconres.2009.03.004.
  • [5] C.Z. Li and L.H. Jiang, “Utilization of limestone powder as an activator for early-age strength improvement of slag concrete”, Construction and Building Materials, vol. 253, art. no. 119257, 2020, DOI: 10.1016/j.conbuildmat.2020.119257.
  • [6] J. Camiletti, A.M. Soliman, and M.L. Nehdi, “Effect of nano-calcium carbonate on early-age properties of ultra-high-performance concrete”, Magazine of Concrete Research, vol. 65, no. 5, pp. 297-307, 2013, DOI: 10.1680/macr.12.00015.
  • [7] Z.H. Xu, Z.H. Zhou, P. Du, and X. Cheng, “Effects of nano-limestone on hydration properties of tricalcium silicate”, Journal of Thermal Analysis and Calorimetry, vol. 129, pp. 75-83, 2017, DOI: 10.1007/s10973-017-6123-9.
  • [8] N. Chen, P.M. Wang, L.Q. Zhao, and G. Zhang, “Water Retention Mechanism of HPMC in Cement Mortar”, Materials, vol. 13, no. 13, art. no. 2918, 2020, DOI: 10.3390/ma13132918.
  • [9] Z.P. Wang, Y.T. Zhao, L. Zhou, et al., “Effects of hydroxyethyl methyl cellulose ether on the hydration and compressive strength of calcium aluminate cement”, Journal of Thermal Analysis and Calorimetry, vol. 140, pp. 545-553, 2020, DOI: 10.1007/s10973-019-08820-6.
  • [10] A. Pierre, A. Perrot, V. Picandet, et al., “Cellulose ethers and cement paste permeabilit”, Cement Concrete Research, vol. 72, pp. 117-127, 2015, DOI: 10.1016/j.cemconres.2015.02.013.
  • [11] J. Pourchez, P. Grosseau, and B. Ruot, “Changes in C3S hydration in the presence of cellulose ethers”, Cement and Concrete Research, vol. 40, no. 2, pp. 179-188, 2010, DOI: 10.1016/j.cemconres.2009.10.008.
  • [12] T. Hurnaus and J. Plank, “Adsorption of non-ionic cellulose ethers on cement revisited”, Construction and Building Materials, vol. 195, pp. 441-449, 2019, DOI: 10. 1016/j. conbuildmat.2018.11.020.
  • [13] H. Bessaies-Bey, R. Baumann, M. Schmitz, et al., “Organic admixtures and cement particles: Competitive adsorption and its macroscopic rheological consequences”, Cement and Concrete Research, vol. 80, pp. 1-9, 2016, DOI: 10.1016/j.cemconres.2015.10.010.
  • [14] C. Brumaud, R. Baumann, M. Schmitz, et al., “Cellulose ethers and yield stress of cement pastes”, Cement and Concrete Research, vol. 55, pp. 14-21, 2014, DOI: 10.1016/j.cemconres.2013.06.013.
  • [15] O.Z. Hua, M.B. Guo, and J.S. Wei, “Influence of cellulose ethers molecular parameters on hydration kinetics of Portland cement at early ages”, Construction and Building Materials, vol. 33, pp. 78-83, 2012, DOI: 10.1016/j.conbuildmat.2012.01.007.
  • [16] F. Ridi, E. Fratini, R. Alfani, et al., “Influence of acrylic superplasticizer and cellulose-ether on the kinetics of tricalcium silicate hydration reaction”, Journal of Colloid and Interface Science, vol. 395, pp. 68-74, 2013, DOI: 10.1016/j.jcis.2012.12.048.
  • [17] H. Yang, C R. Lu, and G.X. Mei, “Shear-thickening behavior of cement pastes under combined effects of mineral admixture and time”, Journal of Materials in Civil Engineering, vol. 30, no. 2, art. no. 04017282, DOI: 10.1061/(ASCE)MT.1943-5533.0002123.
  • [18] F. Mahmoodzadeh and S.E. Chidiac, “Rheological models for predicting plastic viscosity and yield stress of fresh concrete”, Cement and Concrete Research, vol. 49, pp. 1-9, 2013, DOI: 10.1016/j.cemconres.2013.03.004.
  • [19] A. Perrot, T. Lecompte, H. Khelifi, et al., “Yield stress and bleeding of fresh cement pastes”, Cement and Concrete Research, 2012, vol. 42, no. 7, pp. 937-944, 2012, DOI: 10.1016/j.cemconres.2012.03.015.
  • [20] F. Toussaint, C. Roy, and P.H. Jézéquel, “Reducing shear thickening of cement-based suspensions”, Rheologica Acta, vol. 48, pp. 883-895, 2009, DOI: 10.1007/s00397-009-0362-z.
  • [21] A. Yahia, “Shear-thickening behavior of high-performance cement grouts - Influencing mix-design parameters”, Cement and Concrete Research, vol. 41, no. 3, pp. 230-235, 2011, DOI: 10.1016/j.cemconres.2010.11.004.
  • [22] M.X. Chen, L. Yang, Y. Zheng, et al., “Yield stress and thixotropy control of 3D-printed calcium sulfoaluminate cement composites with metakaolin related to structural build-up”, Construction and Building Materials, vol. 252, art. no. 119090, 2020, DOI: 10.1016/j.conbuildmat.2020.119090.
  • [23] R.B. Singh, B. Singh, and N. Kumar, “Thixotropy of self-compacting concrete containing recycled aggregates”, Magazine of Concrete Research, vol. 71, no. 1, pp. 14-25, 2019, DOI: 10.1680/jmacr.17.00273.
  • [24] Y. Vanhove, E. Wirquin, and B. Helnan-Moussa, “Effect of temperature on the thixotropic behaviour of self-consolidating concrete”, Magazine of Concrete Research, vol. 65, no. 1, pp. 52-62, 2013, DOI: 10.1680/macr.12.00016.
  • [25] N. Roussel, “A thixotropy model for fresh fluid concretes: theory, validation and applications”, Cement and Concrete Research, vol. 36, no. 10, pp. 1797-1806, 2006, DOI: 10.1016/j.cemconres.2006.05.025.
  • [26] J.T. Kolawole, R. Combrinck, and W.P. Boshoff, “Rheo-viscoelastic behaviour of fresh cement-based materials: Cement paste, mortar and concrete”, Construction and Building Materials, vol. 248, art. no. 118667, 2020, DOI: 10.1016/j.conbuildmat.2020.118667.
  • [27] H.Y. Cheng, S.C. Wu, H. Li, and X. Zhang, “Influence of time and temperature on rheology and flow performance of cemented paste backfill”, Construction and Building Materials, vol. 231, art. no. 117117, 2020, DOI: 10.1016/j.conbuildmat.2019.117117.
  • [28] C.S. Liu, H.F. Shao, F.Y. Chen, and H. Zheng, “Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry”, Biomaterials, vol. 27, no. 29, pp. 5003-5013, 2006, DOI: 10.1016/j.biomaterials.2006.05.043.
  • [29] G. Heirman, L. Vandewalle, D. Van. Gemert, et al., “Integration approach of the Couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer”, Journal of Non-Newtonian Fluid Mechanics, vol. 150, no. 2-3, pp. 93-103, 2008, DOI: 10.1016/j.jnnfm.2007.10.003.
  • [30] Z.H. Ou, G. Liu, C.H. Huang, et al., “Study on viscosity variation of cement pastes modified by cellulose ethers”, Materials Reports, vol. 30, pp. 135-139, 2016.
  • [31] Y. Liu, C.J. Shi, D.W. Jiao, et al., “Rheological Properties, Models and Measurements for Fresh Cementitious Materials - A Short Review”, Journal of the Chinese Ceramic Society, vol. 45, pp. 708-716, 2017, DOI: 10.14062/j.issn.0454-5648.2017.05.17.
  • [32] W. Li, Z. Huang, F. Cao, et al., “Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix”, Construction and Building Materials, vol. 95, pp. 366-374, 2015, DOI: 10.1016/j.conbuildmat.2015.05.137.
  • [33] P.V.P. Moorthi, F.P. Mio, P. Nanthagopalan, et al., “Onset and intensity of shear thickening in cementitious suspensions-A parametrical study”, Construction and Building Materials, vol. 244, art. no. 118292, 2020, DOI: 10.1016/j.conbuildmat.2020.118292.
  • [34] K. Hashizaki, R. Umeda, M. Miura, et al., “Preparation and Rheological Properties of Cross-linked Liposomes Using Hydroxypropylmethylcellulose Bearing a Hydrophobic Anchor”, Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan, vol. 140, pp. 435-441, 2020.
  • [35] N. Roussel, G. Ovarlez, S. Garrault, et al., “The origins of thixotropy of fresh cement pastes”, Cement and Concrete Research, vol. 42, no. 1, pp. 148-157, 2012, DOI: 10.1016/j.cemconres.2011.09.004.
  • [36] J.W. Bullard, H.M. Jennings, R.A. Livingston, et al., “Mechanisms of cement hydration”, Cement and Concrete Research, vol. 41, no. 12, pp. 1208-1223, 2011, DOI: 10.1016/j.cemconres.2010.09.011.
  • [37] G.Q. Geng, R.J. Myers, Y.S. Yu, et al., “Synchrotron X-ray nanotomographic and spectromicroscopic study of the tricalcium aluminate hydration in the presence of gypsum”, Cement and Concrete Research, vol. 111, pp. 130-137, 2018, DOI: 10.1016/j.cemconres.2018.06.002.
  • [38] C. Rößler, A. Eberhardt, H. Kučerová, and B. Möser, “Influence of hydration on the fluidity of normal Portland cement pastes”, Cement and Concrete Research, vol. 38, no. 7, pp. 897-906, 2008, DOI: 10.1016/j.cemconres.2008.03.003.
  • [39] H.M. Jennings, J.W. Bullard, J.J. Thomas, et al., “Characterization and modeling of pores and surfaces in cement paste: Correlations to processing and properties”, Journal of Advanced Concrete Technology, vol. 6, no. 1, pp. 5-29, 2008.
  • [40] J. Pourchez, P. Grosseau, and B. Ruot, “Current understanding of cellulose ethers impact on the hydration of C (3)A and C (3)A-sulphate systems”, Cement and Concrete Research, vol. 39, no. 8, pp. 664-669, 2009, DOI: 10.1016/j.cemconres.2009.05.009.
  • [41] D.A. Silva and P.J.M. Monteiro, “The influence of polymers on the hydration of portland cement phases analyzed by soft X-ray transmission microscopy”, Cement and Concrete Research, vol. 36, no. 8, pp. 1501-1507, 2006, DOI: 10.1016/j.cemconres.2006.05.010.
  • [42] I. Müller, Influence of cellulose ethers on the kinetics of early Portland cement hydration. KIT Scientific Publishing, 2006.
  • [43] D. Lowke and C. Gehlen, “The zeta potential of cement and additions in cementitious suspensions with high solid fraction”, Cement and Concrete Research, vol. 95, pp. 195-204, 2017, DOI: 10.1016/j.cemconres.2017.02.016.
  • [44] J. Kaufmann, F. Winnefeld, and R. Zurbriggen, “Polymer dispersions and their interaction with mortar constituents and ceramic tile surfaces studied by zeta-potential measurements and atomic force microscopy”, Cement and Concrete Composites, vol. 34, no. 5, pp. 604-611, 2012, DOI: 10.1016/j.cemconcomp.2012.01.012.
  • [45] Q. Yuan, D.J. Zhou, B.Y. Li, et al., “Effect of mineral admixtures on the structural build-up of cement paste”, Construction and Building Materials, vol. 160, pp. 117-126, 2018, DOI: 10.1016/j.conbuildmat.2017.11.050.
  • [46] Z. Xue, D. Gan, Y. Zhang, and Z. Liu, “Rheological behavior of ultrafine-tailings cemented paste backfill in high-temperature mining conditions”, Construction and Building Materials, vol. 253, art. no. 119212, 2020, DOI: 10.1016/j.conbuildmat.2020.119212.
  • [47] Q. Liu and J.S. Laskowski, “The role of metal hydroxides at mineral surfaces in dextrin adsorption, I. Studies on modified quartz samples”, International Journal of Mineral Processing, vol. 26, no. 3-4, pp. 297-316, 1989, DOI: 10.1016/0301-7516(89)90035-5.
  • [48] J. Wang, P. Somasundaran, and D.R. Nagaraj, “Adsorption mechanism of guar gum at solid-liquid interfaces”, Minerals Engineering, vol. 18, pp. 77-81, 2005, DOI: 10.1016/j.mineng.2004.05.013.
  • [49] D.D. Nguyen, L.P. Devlin, P. Koshy, and C.C. Sorrell, “Impact of water-soluble cellulose ethers on polymer-modified mortars”, Journal of Materials Science, vol. 49, pp. 923-951, 2014, DOI: 10.1007/s10853-013-7732-8.
  • [50] J.S. Laskowski, Q. Liu, and C.T. O’connor, “Current understanding of the mechanism of polysaccharide adsorption at the miner-al/aqueous solution interface”, International Journal of Mineral Processing, vol. 84, no. 1-4, pp. 59-68, 2007, DOI: 10.1016/j.minpro.2007.03.006.
  • [51] Q.Q. Zhang, J.Z. Liu, J.P. Liu, F. Han, “Effect of superplasticizers on apparent viscosity of cement-based material with a low water-binder ratio”, Journal of Materials in Civil Engineering, vol. 28, no. 9, art. no. 04016085, 2016, DOI: 10.1061/(ASCE)MT.1943-5533.0001590.
  • [52] S. Haruna and M. Fall, “Time-and temperature-dependent rheological properties of cemented paste backfill that contains superplasticizer”, Powder Technology, vol. 360, pp. 731-740, 2020, DOI: 10.1016/j.powtec.2019.09.025.
  • [53] P.M. Wang, G.R. Zhao, and G.F. Zhang, “Mechanism on Water Retention and Thickening of Cellulose Ethers in Fresh Mortars”, Journal of Chinese Ceramic Society, vol. 45, pp. 1190-1196, 2017, DOI: 10.14062/j.issn.0454-5648.2017.08.19.
  • [54] D.P. Bentz, C.F. Ferraris, M.A. Galler, et al., “Influence of particle size distributions on yield stress and viscosity of cement-fly ash pastes”, Cement and Concrete Research, vol. 42, no. 2, pp. 404-409, 2012, DOI: 10.1016/j.cemconres.2011.11.006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8c81f24-68ae-44fa-a259-2fffe7c25420
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.