PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistical approaches for identification and quantification of soil trace elemental pollution near the traffic way

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The concentrations of eight trace elements (As, Co, Cr, Cu, Fe, Mn, Pb and Zn) in the soil near a traffic way of Suzhou, Anhui province, China have been determined for the pollution assessment and source identification (along with quantification). The results indicate that Fe is the most abundant element followed by Mn, Zn, Cr, Pb, Cu, Co and As. These elements have low-medium coefficients of variation (0.059–0.293), indicating that some of them might have multisources. The combination of single pollution, geoaccumulation and the Nemerow composite indices suggest that the soils in this study are slightly polluted. Based on multivariate statistical analyses (including correlation, cluster and factor analyses), three sources responsible for the trace elemental concentrations in the soils have been identified, including geogenic, agricultural and traffic-related sources. Their mean contributions calculated based on the Unmix model are 35.9, 31.8 and 32.4%, respectively.
Słowa kluczowe
Rocznik
Strony
21--32
Opis fizyczny
Bibliogr. 30 poz., tab., rys.
Twórcy
autor
  • School of Resources and Civil Engineering, Suzhou University, Anhui 234000, China
  • Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institute, Suzhou University, Anhui 234000, China
Bibliografia
  • [1] CARSLAW D.C., Evidence of an increasing NO2/NOx emissions ratio from road traffic emissions, Atmos. Environ., 2005, 39 (26), 4793.
  • [2] ZECHMEISTER H.G., HOHENWALLNER D., RISS A., HANUS-ILLNAR A., Estimation of element deposition derived from road traffic sources by using mosses, Environ. Pollut., 2005, 138 (2), 238.
  • [3] MEHDI M.R., KIM M., SEONG J.C., ARSALAN M.H., Spatiotemporal patterns of road traffic noise pollution in Karachi, Pakistan, Environ. Int., 2011, 37 (1), 97.
  • [4] DE SILVA S., BALL A.S., HUYNH T., REICHMAN S.M., Metal accumulation in roadside soil in Melbourne, Australia. Effect of road age, traffic density and vehicular speed, Environ. Pollut., 2016, 208, 102.
  • [5] JI C., CAO L., LI F., Toxicological evaluation of two pedigrees of clam Ruditapes philippinarum as bioindicators of heavy metal contaminants using metabolomics, Environ. Toxicol. Pharmacol., 2015, 39 (2), 545.
  • [6] AROJOJOYE O.A., OYAGBEMI A.A., AFOLABI J.M., Toxicological assessment of heavy metal bioaccumulation and oxidative stress biomarkers in Clarias gariepinus from Igbokoda River of South Western Nigeria, Bull. Environ. Contam. Toxicol., 2018, 100, 765.
  • [7] ISLAM M.S., AHMED M.K., RAKNUZZAMAN M., HABIBULLAH-AL-MAMUN M., ISLAM M.K., Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country, Ecol. Indic., 2015, 48, 282.
  • [8] TÓTH G., HERMANN T., DA SILVA M.R., MONTANARELLA L., Heavy metals in agricultural soils of the European Union with implications for food safety, Environ. Int., 2016, 88, 299.
  • [9] HUANG Y., LI T., WU C., HE Z., JAPENGA J., DENG M., YANG X., An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils, J. Hazard. Mater., 2015, 299, 540.
  • [10] LI R., ZHAO W., LI Y., WANG W., ZHU X., Heavy metal removal and speciation transformation through the calcination treatment of phosphorus-enriched sewage sludge ash, J. Hazard. Mater., 2015, 283, 423.
  • [11] WALRAVEN N., VAN OS B.J.H., KLAVER G.T., MIDDELBURG J.J., DAVIES G.R., The lead (Pb) isotope signature, behaviour and fate of traffic-related lead pollution in roadside soils in The Netherlands, Sci. Total Environ., 2014, 472, 888.
  • [12] CHEN X., XIA X., ZHAO Y., ZHANG P., Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China, J. Hazard. Mater., 2010, 181 (1–3), 640.
  • [13] ZHANG H., WANG Z., ZHANG Y., DING M., LI L., Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai–Tibet highway, Sci. Total Environ., 2015, 521, 160.
  • [14] ZUPANČIČ N., Lead contamination in the roadside soils of Slovenia, Environ. Geochem. Health., 1999, 21 (1), 37.
  • [15] LINDE M., BENGTSSON H., ÖBORN I., Concentrations and pools of heavy metals in urban soils in Stockholm, Sweden, Water, Air, Soil Pollut. (Focus), 2001, 1 (3–4), 83.
  • [16] GUO G.H., CHEN T.B., SONG B., YANG J., HUANG Z.C., LEI M., CHEN Y.C., Emissions of heavy metals from road traffic and effect of emitted lead on land contamination in China. A primary study, Geogr. Res., 2007, 26 (5), 922.
  • [17] MEI J., LI Z., SUN L., GUI H., WANG X., Assessment of heavy metals in the urban river sediments in Suzhou City, Northern Anhui Province, China, Proc. Environ. Sci., 2011, 10, 2547.
  • [18] SUN L., Lead pollution in response to transportation: a case study in the rural-urban fringe zone of Suzhou, northern Anhui Province, China, J. Chem. Pharm. Res., 2014, 6 (7), 2370.
  • [19] SUN L., LIU X., CHENG C., Quality evaluation of water from subsidence area and controlling factor analysis. Zhuxianzhuang case study, Nat. Environ. Pollut. Technol., 2016, 15 (3), 1035.
  • [20] LIANG J., CHEN C., SONG X., HAN Y., LIANG Z., Assessment of heavy metal pollution in soil and plants from Dunhua sewage irrigation area, Int. J. Electrochem. Sci., 2011, 6 (11), 5314
  • [21] PRAVEENA S.M., AHMED A., RADOJEVIC M., ABDULLAH M.H., ARIS A.Z., Heavy metals in mangrove surface sediment of Mengkabong Lagoon, Sabah. multivariate and geoaccumulation index approaches, Int. J. Environ. Res., 2008, 2 (2), 139.
  • [22] DAI J., LI S., ZHANG Y., WANG R., YU Y., Distributions, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in topsoil at Jinan city, China, Environ. Monit. Assess., 2008, 147 (1–3), 317.
  • [23] HAN Y., CAO J., POSMENTIER E.S., Multivariate analysis of heavy metal contamination in urban dusts of Xian, Central China, Sci. Total Environ., 2006, 355 (1–3), 176.
  • [24] NORRIS G., VEDANTHAM R., DUVALL R., HENRY R.C., EPA Unmix 6.0 fundamentals & user guide, US Environmental Protection Agency, Office of Research and Development, Washington, DC, 2007.
  • [25] SARKAR D., DATTA R., HANNIGAN R., Concepts and Applications in Environmental Geochemistry, Vol. 5, Elsevier, 2011.
  • [26] CEPA, Elemental background values of soils in China, Chinese Environmental Protection Administration, Environmental Science Press of China, Beijing 1990.
  • [27] COBELO-GARCÍA A., PREGO R., Influence of point sources on trace metal contamination and distribution in a semi-enclosed industrial embayment: the Ferrol Ria (NW Spain), Estuar. Coast. Shelf. S., 2004, 60 (4), 695.
  • [28] MAIZ I., ARAMBARRI I., GARCIA R., MILLAN E., Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis, Environ. Pollut., 2000, 110 (1), 3.
  • [29] SUN L.H., GUI H.R., Establishment of water source discrimination model in coal mine by using hydrogeochemistry and statistical analysis. A case study from Renlou Coal Mine in northern Anhui Province, China, J. Coal. Sci. Eng. (China), 2012, 18 (4), 385.
  • [30] SUN L., PENG W., CHENG C., Source estimating of heavy metals in shallow groundwater based on UNMIX Model. A case study, Indian. J. Geo-Mar. Sci., 2016, 45 (6), 756.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8c5c91b-457b-4dff-baf5-11e8bbebc63f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.