PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High flow, low shear impellers versus high shear impellers; dispersion of oil drops in water and other examples

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flow patterns generated by two ChemShear impellers, CS 2 and CS 4 have been measured and flow numbers calculated; Fl = 0.04 for both impellers. Transient and equilibrium drop sizes, d32 μm of 3 different viscosity silicone oils agitated by a high-shear Rushton turbine, RT, a low-shear, high-flow HE3 impeller and the two ChemShears were determined. The equilibrium d32 are correlated for all impellers, by d32 = 1300(εT )−0.58 max.svv0.14 with an R2 = 0.94. However, the time to reach steady state and the equilibrium size at the same specific power do not match the above descriptors of each impeller’s characteristics. In other literature, these descriptors are also misleading. In the case of mixing time, a high shear RT of the same size as a high flow HE3 requires the same time at the same specific power in vessels of H/T = 1. In bioprocessing, where concern for damage to cells is always present, free suspension animal cell culture with high shear RTs and low-shear impellers is equally effective; and with mycelial fermentations, damage to mycelia is greater with low shear than high. The problems with these descriptors have been known for some time but mixer manufacturers and ill-informed users and researchers continue to employ them.
Rocznik
Strony
77–--90
Opis fizyczny
Bibliogr. 41 poz., tab., rys.
Twórcy
  • School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
  • School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Bibliografia
  • 1. Arai K., Konno M., Matumagata Y., Saito S., 1977. The effect of dispersed phase viscosity on the maximum stable drop size in turbulent flow. J. Chem. Eng. Jpn., 10, 325–330. DOI: 10.1252/jcej.10.325.
  • 2. Baldyga J., Bourne J.R., Pacek A.W., Amanullah A., Nienow A.W., 2001. Effects of agitation and scale-up on drop size in turbulent dispersions: Allowance for intermittency. Chem. Eng. Sci., 56, 3377–3385. DOI: 10.1016/s0009-2509(01)00027-6.
  • 3. Chapman C.M., Nienow A.W., Cooke M., Middleton J.C., 1983. Particle-gas-liquid mixing in stirred vessels: Part 2 – gas-liquid mixing. Chem. Eng. Res. Des., 61, 82–95.
  • 4. Costariol E., Rotondi M.C., Amini A., Hewitt C.J., Nienow A.W., Heathman T.R.J., Rafiq Q.A., 2020. Demonstrating the manufacture of human CAR-T cells in an automated stirred-tank bioreactor. Biotechnol. J., 15, 2000177. DOI: 10.1002/biot.202000177.
  • 5. Davies J.T., 1985. Droplet sizes of emulsions related to turbulent energy dissipation rates. Chem.Eng. Sci., 40, 839–842. DOI: 10.1016/0009-2509(85)85036-3.
  • 6. Dyster K.N., Koutsakos E., Jaworski Z., Nienow A.W., 1993. An LDA study of the radial discharge velocities generated by a Rushton turbine: Newtonian fluids, Re ≥ 5. Chem. Eng. Res. Des., 71, 11–23.
  • 7. Fondy P.L., Bates R.L., 1963. Agitation of liquid systems requiring a high shear characteristic. AIChE J., 9, 338–342. DOI: 10.1002/aic.690090312.
  • 8. Ghotli R.A., Raman A.A.A., Ibrahim S., Baroutian S., 2013. Liquid – liquid mixing in stirred vessels: A review. Chem. Eng. Comm., 200, 595–627. DOI: 10.1080/00986445.2012.717313.
  • 9. Hanga M.P., Ali J., Moutsatsou P., de la Raga F.A., Hewitt C.J., Nienow A.W, Wall I., 2020. Bioprocess development for scalable production of cultivated meat. Biotech. Bioeng., 117, 3029–3039. DOI: 10.1002/bit.27469.
  • 10. Hass V.C., Nienow A.W., 1989. A new axial pumping agitator for the dispersion of gas in liquids. Chem. Ing. Technik, 61, 152–154. DOI: 10.1002/cite.330610213.
  • 11. Ibrahim S., Nienow A.W., 2004. Suspension of microcarriers for cell culture with axial flow impellers. Chem. Eng. Res. Des., 82, 1082–1088. DOI: 10.1205/cerd.82.9.1082.44161.
  • 12. Indco, 2021. The difference between high shear and low shear mixing. Available at: https://www.indco.com/blog/indco/2020/03/05/the-difference-between-high-shear-and-low-shear-mixing.
  • 13. Jaworski Z., Nienow A.W., Dyster K.N., 1996. An LDA study of the turbulent flow field in a baffled vessel agitated by an axial, down-pumping hydrofoil impeller. Can. J. Chem. Eng., 74, 3–15. DOI: 10.1002/cjce.5450740103.
  • 14. Justen P., Paul G.C., Nienow A.W., Thomas C.R., 1996. Dependence of mycelial morphology on impeller type and agitation intensity. Biotech. Bioeng., 52, 672–684. DOI: 10.1002/(SICI)10970290(19961220)52:6<672::AID-BIT5>3.0.CO;2-L.
  • 15. Langheinrich C., Nienow A.W., Eddleston T., Stevenson N.C., Emery A.N., Clayton T.M, Slater N.K.H., 1998. Liquid homogenisation studies in animal cell bioreactors of up to 8m3 in volume. Food Bioprod. Process., 76, 107–116. DOI: 10.1205/096030898531873.
  • 16. Leng D.E., Calabrese R.V., 2004. Immiscible liquid-liquid systems. In: Paul E.L., Atiemo-Obeng V.A., Kresta S.M. (Eds), Handbook of industrial mixing: Science and Practice, John Wiley, New York. 639–753. DOI: 10.1002/ 0471451452.ch12.
  • 17. Leng D.E., Calabrese R.V., 2016. Immiscible liquid-liquid systems. In: Kresta S.M., Etchells III A.W., Dickey D.S., Atiemo-Obeng V.A. (Eds), Advances in industrial mixing: A companion to the handbook of industrial mixing. John Wiley, New York. 12, 457–464.
  • 18. McManamey W.J., 1979. Sauter mean and maximum drop diameters of liquid-liquid dispersions in turbulent agitated vessel at low dispersed phase hold-up. Chem. Eng. Sci., 34, 432–434. DOI: 10.1016/0009-2509(79)85081-2.
  • 19. Musgrove M., Ruszkowski S., 2000. Influence of impeller type,and agitation conditions on the drop size of immiscible liquid dispersions. Proceedings of the 10th European Conference on Mixing. Delft, the Netherlands, 2–5 July 2000, 165–172. DOI: 10.1016/b978-044450476-0/50022-4.
  • 20. Nienow A.W., Coopman K., Heathman T.R.J., Rafiq Q.A., Hewitt C.J., 2016. Chapter 3 – Bioreactor engineering fundamentals for stem cell manufacturing. In: Cabral J.M.S. et al (Eds.) Stem Cell Manufacturing. Elsevier Science, Cambridge, USA. 43–75. DOI: 10.1016/B978-0-444-63265-4.00003-0.
  • 21. Nienow A.W., Scott W.H., Hewitt C.J., Thomas C.R., Lewis G., Amanullah A., Kiss R., Meier S.J., 2013. Scale-down studies for assessing the impact of different stress parameters on growth and product quality during animal cell culture. Chem. Eng. Res. Des., 91, 2265–2274. DOI: 10.1016/j.cherd.2013.04.002.
  • 22. Nienow A.W., 2021. The impact of fluid dynamic stress in stirred bioreactors-the scale of the biological entity: A personal view. Chem. Ing. Tech., 93, 17–30. DOI: 10.1002/cite.202000176.
  • 23. Nienow A.W., 1997. On impeller circulation and mixing effectiveness in the turbulent flow regime. Chem. Eng. Sci., 52, 2557–2565. DOI: 10.1016/S0009-2509(97)00072-9.
  • 24. Nienow A.W., 2014. Stirring and stirred tank reactors. Chem. Ing Tech., 86, 2063–2074. DOI: 10.1002/cite.2014 00087.
  • 25. Nienow A.W., BujalskiW., 2002. Recent studies on agitated three phase (gas-liquid-solid) systems in the turbulent regime. Chem. Eng. Res. Des., 80, 832–838. DOI: 10.1205/026387602321143363.
  • 26. NOV Chemineer, 2021. Available at: https://www.chemineer.com/literature.html.
  • 27. Oh S.K.W., Nienow A.W., Emery A.N., Al-Rubeai M., 1992. Further studies of the culture of mouse hybridomas in an agitated bioreactor with and without continuous sparging. J. Biotechnol., 22, 245–270. DOI: 10.1016/0168- 1656(92)90144-X.
  • 28. Oldshue J.Y., 1983. Fluid mixing technology and practice, McGraw Hill, New York.
  • 29. Pacek A.W, Nienow A.W., 1995. A problem for the description of turbulent dispersed liquid-liquid systems. Int. J. Multiphase Flow, 21, 323–325. DOI: 10.1016/0301-9322(94)00068-u.
  • 30. Pacek A.W, Nienow A.W., Moore I.P.T., 1994b. On the structure of turbulent liquid-liquid dispersed flows in an agitated vessel. Chem. Eng. Sci., 49, 3485–3498. DOI: doi.org/10.1016/s0009-2509(94)85027-5.
  • 31. Pacek A.W., Chamsart S., NienowA.W., Bakker A., 1999. The influence of impeller type on mean drop size and drop size distribution in an agitated vessel. Chem. Eng. Sci., 54, 4211–4222. DOI: 10.1016/s0009-2509(99)00156-6.
  • 32. Pacek A.W., Moore I.P.T., Calabrese R.V., Nienow A.W., 1993. Evolution of drop size distributions and average drop diameters in liquid-liquid dispersions before and after phase inversion. Chem. Eng. Res. Des., 71, 340–341.
  • 33. Pacek A.W., Moore I.P.T., Nienow A.W., Calabrese R.V., 1994a. A video technique for the measurement of the dynamics of liquid-liquid dispersion during phase inversion. AIChE J., 40, 1940–1949. DOI: 10.1002/aic.690401203.
  • 34. Padron D.A., Okonkwo D.A., 2018. Effect of impeller type on drop size of turbulent, non-coalescing liquid-lquid dispersions. 16th European Conference on Mixing, Toulouse, France, 9–12 September 2018.
  • 35. Paterson G.K., Pauls E.L., Kresta S.M., Etchells A.W., 2015. Mixing and chemical reaction. In: Kresta S.M., Etchells III A.W., Dickey D.S, Atiemo-Obeng V.A. (Eds.), Advances in industrial mixing: A companion to the handbook of industrial mixing. John Wiley, New York. 465–478.
  • 36. Rotondi M., Grace N., Betts J., Bargh N., Costariol E., Zoro B., Hewitt C.J., Nienow A.W., Rafiq Q.A., 2021. Design and development of a new ambr250r bioreactor vessel for improved cell and gene therapy applications. Biotechnol. Lett., 43, 1103–1116. DOI: 10.1007/s10529-021-03076-3.
  • 37. Sandadi S., Pedersen H., Bowers J.S., Rendeiro D., 2011. A comprehensive comparison of mixing, mass transfer, Chinese hamster ovary cell growth, and antibody production using Rushton turbine and marine impellers. Bioprocess. Biosyst. Eng., 34, 819. DOI: 10.1007/s00449-011-0532-0.
  • 38. Sepro Mixing and Pumping, 2021. Mixing basics: Shear and flow. Available at: https://mixing.seprosystems.com/mixing-basics-shear-and-flow/.
  • 39. Simmons M.J.H., Zhu H, BujalskiW., Hewitt C.J., Nienow A.W., 2007. Mixing in bioreactors using agitators with a high solidity ratio and deep blades. Chem. Eng. Res. Des., 85, 551–559. DOI: 10.1205/cherd06157.
  • 40. SPX Flow, 2021. Lightnin Mixers. General Overview.Available at: https://www.spxflow.com/assets/pdf/LGT_A400_B-937_US.pdf.
  • 41. Wille M., Langer G., Werner U., 2001. The influence of macroscopic elongational flow on dispersion processes in agitated tanks. Chem. Eng. Technol., 24, 119–127. DOI: 10.1002/1521-4125(200102)24:2<119::aidceat119>3.0.co;2-g.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8c59843-189a-4225-98c7-91f4e6533094
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.