PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement of supercritical fluid extraction in membrane cleaning process by addition of organic solvents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the process of membrane cleaning by supercritical fluid extraction was investigated. Polypropylene microfiltration membranes, contaminated with oils, were treated in a batch process with a supercritical fluid (SCF). As extractant, pure supercritical carbon dioxide or supercritical carbon dioxide with admixtures of methanol, ethanol and isopropanol were used. Single-stage and multi-stage extraction was carried out and process efficiency was determined. The obtained results showed that addition of organic solvents significantly enhances the cleaning performance, which increases with increase of organic solvent concentration and decreases with increasing temperature. All three solvents showed a comparable effect of efficiency enhancement. The results confirmed that supercritical fluid extraction can be applied for polypropylene membrane cleaning.
Rocznik
Strony
403--414
Opis fizyczny
Bibliogr. 18 poz., tab., rys.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Akin O., Temelli F., 2011. Effect of supercritical CO2 flux, temperature and processing time on physicochemical and morphological properties of commercial reverse osmosis membranes. J. Supercrit. Fluids, 60, 81 – 88. DOI: 10.1016/j.supflu.2011.03.011.
  • 2. Baiker A., Wandeler R., 2000. Supercritical fluids; opportunities in heterogeneous catalysis. CATTECH 4, 128– 143. DOI: 10.1023/A:1011943227355.
  • 3. Berghmans S., Berghmans H., Meijer H., 1996. Spinning of hollow porous fibres via the TIPS mechanism. J. Membrane Sci., 116, 171 –189. DOI: 10.1016/0376-7388(96)00037-3.
  • 4. Bogel-Łukasik E., Gomes Da Silva M., Nogueira I. D., Bogel-Łukasik R., Nunes Da Ponte M., 2009. Study on selectivity of myrcene hydrogenation in high-pressure carbon dioxide catalysed by noble metal catalysts. Green Chem., 11, 1847–1856. DOI: 10.1039/B916017P.
  • 5. Brunner G., 2004. Supercritical Fluids as Solvents and Reaction Media. Elsevier.
  • 6. Brunner G., 2010. Applications of supercritical fluids. Annu. Rev. Chem. Biomol. Eng., 1, 321–342. DOI: 10.1146/annurev-chembioeng-073009-101311.
  • 7. Conceiao L., Bogel-Łukasik R., Bogel-Łukasik E., 2012. Supercritical CO2 as an effective medium for a novel conversion of glycerol and alcohols in the heterogeneous telomerisation of butadiene. Green Chem., 14, 673–681. DOI: 10.1039/C2GC16149D.
  • 8. Jokić S., Svilović S., Zeković Z., Vidović S., 2011. Mathematical modelling of soybean oil solubility in supercritical carbon dioxide. Int. J. Food Sci. Technol., 46, 1031-1037. DOI: 10.1111/j.13652621.2011.02571.
  • 9. Krzysztoforski J., Krasiński A., Henczka M., Piątkiewicz W., Szwast M., 2012. Influence of supercritical carbon dioxide on structure and mechanical properties of porous polypropylene membranes. Challenges of Modern Technol., 3, 20 – 25.
  • 10. Lei Z., Ohyabu H., Sato Y., Inomata H., Smith Jr. R.L., 2007. Solubility, swelling degree and crystallinity of carbon dioxide-polypropylene system. J. Supercrit. Fluids 40, 452 – 461. DOI: 10.1016/j.supflu.2006.07.016.
  • 11. Li Z., Tang H., Liu X., Xia Y., Jiang J., 2008. Preparation and characterization of microporous poly(vinyl butyral) membranes by supercritical CO2-induced phase separation. J. Membrane Sci., 312, 115 – 124. DOI: 10.1016/j.memsci.2007.12.043.
  • 12. Sovova H., Stateva R.P., 2011. Supercritical fluid extraction from vegetable materials. Rev. Chem. Eng., 27, 79-156. DOI: 10.1515/REVCE.2011.002.
  • 13. Szwast M., 2012. Membrany polimerowe do rozdzielania gazów. Przemysł Chemiczny, 91, 1356–1361.
  • 14. Szwast M., Fabianowski W., Gradoń L., Piątkiewicz W., 2008. Koncepcja wytwarzania membran kapilarnych oraz metody oceny ich jakości. Przemysł Chemiczny, 87, 206–209.
  • 15. Szwast M., Lipińska I., Jermakowicz J., Piątkiewicz W., 2007. Modyfikacja własności filtracyjnych i mechanicznych kapilarnych membran polimerowych. II Konferencja Naukowo-Techniczna Doktorantów i Młodych Naukowców. Młodzi naukowcy wobec wyzwań współczesnej techniki, Warszawa, 24-26.08.2007, Referaty. 57–63.
  • 16. Xinli Z., Xiaoling H., Ping G., Guozheng L., 2009. Preparation and pore structure of porous membrane by supercritical fluid. J. Supercrit. Fluids 49, 111 – 116. DOI: 10.1016/j.supflu.2008.09.021.
  • 17. Yin J.-Z., Wang A.-Q.,Wei W., Liu Y, Shi W-H, 2005. Analysis of the operation conditions for supercritical fluid extraction of seed oil. Sep. Purif. Technol. 43, 2, 163-167. DOI: 10.1016/j.seppur.2004.10.016.
  • 18. Zhang C.-F., Zhu B.-K., Ji G.-L., Xu Y.-Y., 2007. Supercritical carbon dioxide extraction in membrane formation by thermally induced phase separation. J. Appl. Polymer Sci., 103, 1632–1639. DOI: 10.1002/app.24620.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8c21dd8-afec-4298-856f-dec133d8c2c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.