PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methodology for choosing the optimum architecture of a STES system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a methodology for choosing geometrical parameters of a Seasonal Thermal Energy Storage facility (STES) on its thermal capacity. The STES is placed in both the ground under ground and connected to and solar panels. A number of scenarios were investigated to find an adequate geometrical proportions of the STES (for constant tank size and solar panel area.) The results obtained show that the use of various STES geometries could reduce heat accumulation to 30% depending on the architecture solution chosen.
Rocznik
Strony
153--164
Opis fizyczny
Bibliogr. 68 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
Bibliografia
  • [1] W. Budzianowski, Modelling of co2 content in the atmosphere until 2300: Influence of energy intensity of gross domestic product and carbon intensity of energy, International Journal of Global Warming 5 (1) (2013) 1 17.
  • [2] J.-H. Wee, Carbon dioxide emission reduction using molten carbonate fuel cell systems, Renewable and Sustainable Energy Reviews 32 (2014) 178–191.
  • [3] L. Bartela, J. Kotowicz, Analysis of operation of the gas turbine in a poligeneration combined cycle, Archives of Thermodynamics 34 (4) (2013) 137–159.
  • [4] T. Bartela, A. Skorek-Osikowska, J. Kotowicz, Economic analysis of a supercritical coal-fired chp plant integrated with an absorption carbon capture installation, Energy 64 (2014) 513–523.
  • [5] Łukasz Nikonowicz, J. Milewski, Determination of electronic conductance of solid oxide fuel cells, Journal of Power Technologies 91 (2) (2011) 82–92.
  • [6] D. Bakalis, A. Stamatis, Incorporating available micro gas turbines and fuel cell: Matching considerations and performance evaluation, Applied Energy 103 (2013) 607–617.
  • [7] R. Chacartegui, B. Monje, D. Sánchez, J. Becerra, S. Campanari, Molten carbonate fuel cell: Towards negative emissions in wastewater treatment chp plants, International Journal of Greenhouse Gas Control 19 (2013) 453–461.
  • [8] C. Guerra, A. Lanzini, P. Leone, M. Santarelli, D. Beretta, Experimental study of dry reforming of biogas in a tubular anode-supported solid oxide fuel cell, International Journal of Hydrogen Energy 38 (25) (2013) 10559–10566.
  • [9] E. Jannelli, M. Minutillo, A. Perna, Analyzing microcogeneration systems based on lt-pemfc and ht-pemfc by energy balances, Applied Energy 108 (2013) 82–91.
  • [10] D. McLarty, J. Brouwer, S. Samuelsen, Hybrid fuel cell gas turbine system design and optimization, Journal of Fuel Cell Science and Technology 10 (4).
  • [11] J. Qian, Z. Tao, J. Xiao, G. Jiang, W. Liu, Performance improvement of ceria-based solid oxide fuel cells with yttria-stabilized zirconia as an electronic blocking layer by pulsed laser deposition, International Journal of Hydrogen Energy 38 (5) (2013) 2407–2412.
  • [12] S. Sieniutycz, J. Jezowski, Energy Optimization in Process Systems and Fuel Cells, 2013.
  • [13] J. Stempien, Q. Sun, S. Chan, Performance of power generation extension system based on solid-oxide electrolyzer cells under various design conditions, Energy 55 (2013) 647–657.
  • [14] S.-B. Wang, C.-F. Wu, S.-F. Liu, P. Yuan, Performance optimization and selection of operating parameters for a solid oxide fuel cell stack, Journal of Fuel Cell Science and Technology 10 (5).
  • [15] W. Wang, H. Li, X.-F. Wang, Analyses of part-load control modes and their performance of a sofc/mgt hybrid power system, Dalian Ligong Daxue Xuebao/Journal of Dalian University of Technology 53 (5) (2013) 653–658.
  • [16] F. Chabane, N. Moummi, S. Benramache, Experimental analysis on thermal performance of a solar air collector with longitudinal fins in a region of biskra, algeria, Journal of Power Technologies 93 (1) (2013) 52–58.
  • [17] M. Reuss, M. Beck, J. Müller, Design of a seasonal thermal energy storage in the ground, Solar energy 59 (4) (1997) 247–257.
  • [18] G. Hellström, S. Larson, Seasonal thermal energy storage–the hydrock concept, Bulletin of Engineering Geology and the Environment 60 (2) (2001) 145–156.
  • [19] M. Inalli, M. Unsal, V. Tanyildizi, A computational model of a domestic solar heating system with underground spherical thermal storage, Energy 22 (12) (1997) 1163–1172.
  • [20] R. Yumruta¸s, M. Ünsal, A computational model of a heat pump system with a hemispherical surface tank as the ground heat source, Energy 25 (4) (2000) 371–388.
  • [21] R. Yumruta¸s, M. Ünsal, Analysis of solar aided heat pump systems with seasonal thermal energy storage in surface tanks, Energy 25 (12) (2000) 1231–1243.
  • [22] R. Yumruta¸s, M. Kano˘glu, A. Bolatturk, M. ¸ S. Bedir, Computational model for a ground coupled space cooling system with an underground energy storage tank, Energy and buildings 37 (4) (2005) 353–360.
  • [23] R. Yumruta¸s, M. Ünsal, Modeling of a space cooling system with underground storage, Applied thermal engineering 25 (2) (2005) 227–239.
  • [24] M. Inalli, Design parameters for a solar heating system with an underground cylindrical tank, Energy 23 (12) (1998) 1015–1027.
  • [25] D. Lindenberger, T. Bruckner, H.-M. Groscurth, R. Kümmel, Optimization of solar district heating systems: seasonal storage, heat pumps, and cogeneration, Energy 25 (7) (2000) 591–608.
  • [26] B. Nordell, G. Hellström, High temperature solar heated seasonal storage system for low temperature heating of buildings, Solar Energy 69 (6) (2000) 511–523.
  • [27] D. Pahud, Central solar heating plants with seasonal duct storage and short-term water storage: design guidelines obtained by dynamic system simulations, Solar Energy 69 (6) (2000) 495–509.
  • [28] M. Amirinejad, N. Tavajohi-Hasankiadeh, S. Madaeni, M. Navarra, E. Rafiee, B. Scrosati, Adaptive neuro-fuzzy inference system and artificial neural network modeling of proton exchange membrane fuel cells based on nanocomposite and recast nafion membranes, International Journal of Energy Research 37 (4) (2013) 347–357.
  • [29] S. Hajimolana, S. Tonekabonimoghadam, M. Hussain, M. Chakrabarti, N. Jayakumar, M. Hashim, Thermal stress management of a solid oxide fuel cell using neural network predictive control, Energy 62 (2013) 320–329.
  • [30] D. Marra, M. Sorrentino, C. Pianese, B. Iwanschitz, A neural network estimator of solid oxide fuel cell performance for on-field diagnostics and prognostics applications, Journal of Power Sources 241 (2013) 320-329.
  • [31] O. Razbani, M. Assadi, Artificial neural network model of a short stack solid oxide fuel cell based on experimental data, Journal of Power Sources 246 (2014) 581–586.
  • [32] A. Zamaniyan, F. Joda, A. Behroozsarand, H. Ebrahimi, Application of artificial neural networks (ann) for modeling of industrial hydrogen plant, International Journal of Hydrogen Energy 38 (15) (2013) 6289–6297.
  • [33] A. Ucar, M. Inalli, Thermal and economic comparisons of solar heating systems with seasonal storage used in building heating, Renewable Energy 33 (12) (2008) 2532–2539.
  • [34] A. Simons, S. K. Firth, Life-cycle assessment of a 100% solar fraction thermal supply to a european apartment building using water-based sensible heat storage, Energy and Buildings 43 (6) (2011) 1231–1240.
  • [35] J. Zhao, Y. Chen, S. Lu, Simulation study on operating modes of seasonal underground thermal energy storage, in: Proceedings of ISES World Congress 2007 (Vol. I–Vol. V), Springer, 2009, pp. 2119–2122.
  • [36] P. Pinel, C. Cruickshank, I. Beausoleil-Morrison, A.Wills, A review of available methods for seasonal storage of solar thermal energy in residential applications, Renewable and Sustainable Energy Reviews 15 (7) (2011) 3341–3359.
  • [37] M. Sweet, J. McLeskey, Numerical simulation of underground seasonal solar thermal energy storage (sstes) for a single family dwelling using trnsys, Solar Energy.
  • [38] M. de Guadalfajara, M. A. Lozano, L. M. Serra, Evaluation of the potential of large solar heating plants in spain, Energy Procedia 30 (2012) 839–848.
  • [39] M. L. Sweet, J. T. McLeskey Jr, Numerical simulation of underground seasonal solar thermal energy storage (SSTES) for a single family dwelling using TRNSYS, Solar Energy 86 (1) (2012) 289–300.
  • [40] K. Çomaklı, U. Çakır, M. Kaya, K. Bakirci, The relation of collector and storage tank size in solar heating systems, Energy Conversion and Management 63 (2012) 112–117.
  • [41] T. Schmidt, J. Nussbicker, Monitoring results from german central solar heating plants with seasonal storage, in: Solar World Congress, ISES, 2005, pp. 1–6.
  • [42] T. Schmidt, D. Mangold, New steps in seasonal thermal energy storage in germany, Tech. rep., Solites – Steinbeis Research Institute for Solar and Sustainable Thermal Energy Systems (2006).
  • [43] T. Schmidt, Seasonal thermal energy storage – pilot projects and experiences in germany, Tech. rep., Steinbeis Research Institute for Solar and Sustainable Thermal Energy Systems (2008).
  • [44] A. Ziębik, J. Zuwała, Analiza techniczno-ekonomiczna zastosowania zasobnika ciepła w elektrociepłowni z turbin ˛ a przeciwprężną w celu maksymalizacji produkcji szczytowej energii elektrycznej, Gospodarka Paliwami i Energią (2) (2000) 8–12.
  • [45] A. Ziębik, J. Zuwała, C. CIASNOCHA, Dobór optymalnej wielkości zasobnika ciepła przy zadanym wykresie rzeczywistym obciążeń w elektrociepłowni z turbin ˛ a przeciwprężną, Energetyka (9) (2001) 507–517.
  • [46] J. Zuwała, Korzyści energetyczne i ekonomiczne zastosowania zasobników ciepła w elektrociepłowniach, Gospodarka Paliwami i Energią (5-6) (2002) 17–21.
  • [47] J. Zuwała, Dobór optymalnej mocy turbiny i zasobnika ciepła dla elektrociepłowni z turbin ˛ a przeciwprężną, Archiwum Energetyki 34 (2 s 185).
  • [48] A. Ziębik, A. Fr˛echowicz, J. Zuwała, Analiza porównawcza jednoprzewodowego systemu przesyłania ciepła z zastosowaniem zasobników ciepła, Prace Naukowe Politechniki Warszawskiej. Mechanika (211) (2005) 319–330.
  • [49] J. Zuwała, Wpływ" trybu weekendowego" pracy zasobnika ciepła na struktur ˛ e wytwarzania energii elektrycznej w elektrociepłowni komunalnej, Ciepłownictwo, Ogrzewnictwo, Wentylacja.
  • [50] J. Skorek, W. Kostowski, Model pracy zasobnika ciepła zintegrowanego z małym układem skojarzonym, Prace Naukowe Politechniki Warszawskiej. Konferencje 3 (22) (2002) 1085–1092.
  • [51] W. KOSTOWSKI, J. KALINA, J. SKOREK, Zwiększenie efektywności energetycznej i ekonomicznej skojarzonego wytwarzania ciepła i energii elektrycznej przez zastosowanie zasobnika ciepła, Ciepłownictwo, Ogrzewnictwo, Wentylacja 36 (5) (2005) 8–14.
  • [52] J. SKOREK, W. KOSTOWSKI, Zasobniki ciepła w układach kogeneracyjnych—aspekty techniczne i ekonomiczne.
  • [53] S. Mańkowski, Projektowanie instalacji ciepłej wody użytkowej, Arkady, 1981.
  • [54] M. Dzierzgowski,Wymiana ciepła oraz dobór elementów układu płaskich kolektorów słonecznych z zasobnikiem ciepła, Ph.D. thesis, Politechnika Warszawska (1985).
  • [55] D. Mangold, Seasonal storage – a german success story, Sun & Wind Energy 1 (2007) 48–58.
  • [56] H.-F. Zhang, X.-S. Ge, H. Ye, Modeling of a space heating and cooling system with seasonal energy storage, Energy 32 (1) (2007) 51–58.
  • [57] H.-J. Diersch, D. Bauer, W. Heidemann, W. Rühaak, P. Schätzl, Finite element modeling of borehole heat exchanger systems: Part 1. fundamentals, Computers & Geosciences 37 (8) (2011) 1122–1135.
  • [58] H.-J. Diersch, D. Bauer, W. Heidemann, W. Rühaak, P. Schätzl, Finite element modeling of borehole heat exchanger systems: Part 2. numerical simulation, Computers & Geosciences 37 (8) (2011) 1136–1147.
  • [59] H. Paksoy, O. Andersson, S. Abaci, H. Evliya, B. Turgut, Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer, Renewable Energy 19 (1) (2000) 117–122.
  • [60] J. Kim, Y. Lee, W. S. Yoon, J. S. Jeon, M.-H. Koo, Y. Keehm, Numerical modeling of aquifer thermal energy storage system, Energy 35 (12) (2010) 4955–4965.
  • [61] R. Cuypers, N. Maraz, J. Eversdijk, C. Finck, E. Henquet, H. Oversloot, H. v. Spijker, A. de Geus, Development of a seasonal thermochemical storage system, Energy Procedia 30 (2012) 207–214.
  • [62] H. Kerskes, B. Mette, F. Bertsch, S. Asenbeck, H. Drück, Chemical energy storage using reversible solid/gasreactions (CWS)–results of the research project, Energy Procedia 30 (2012) 294–304.
  • [63] B. Mette, H. Kerskes, H. Drück, Concepts of longterm thermochemical energy storage for solar thermal applications–selected examples, Energy Procedia 30 (2012) 321–330.
  • [64] B. Michel, N. Mazet, S. Mauran, D. Stitou, J. Xu, Thermochemical process for seasonal storage of solar energy: Characterization and modeling of a high density reactive bed, Energy.
  • [65] J. Fan, S. Furbo, E. Andersen, Z. Chen, B. Perers, M. Dannemand, Thermal behavior of a heat exchanger module for seasonal heat storage, Energy Procedia 30 (2012) 244–254.
  • [66] T.-M. Tveit, T. Savola, A. Gebremedhin, C.-J. Fogelholm, Multi-period minlp model for optimising operation and structural changes to CHP plants in district heating networks with long-term thermal storage, Energy Conversion and Management 50 (3) (2009) 639–647.
  • [67] J. Milewski, M.Wołowicz,W. Bujalski, Seasonal thermal energy storage—a size selection, Applied Mechanics and Materials 467 (2014) 270...276.
  • [68] Hyprotech Corporation, HYSYS. Plant Steady State Modelling (1998).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8c1dc49-78b2-433b-9b27-cf1b41ce8297
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.