PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distribution and role of the genus Oithona (Copepoda: Cyclopoida) in the South China Sea

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The relationships between the small cyclopoid copepod Oithona and hydrological factors, phytoplankton and ichthyoplankton were evaluated using the data obtained in the central South China Sea (SCS) in summer 2014. The genus abundance ranged from 6.00 ind. m−3 to 93.75 ind. m−3 with high abundance band occurring in the branch of SCS Monsoon Jet. The lower temperature and higher salinity in the surface water of the band than other zones indicated that deep water intrusion was a positive factor for aggregation of the genus. The community structure of the genus was dominated by Oithona plumifera and Oithona similis made up 97% of the genus abundance associated with Oithona tenuis. The result of db-RDA analysis showed that the community structure of the genus was affected by temperature, Chl a, larval fishes and fish spawns, and temperature was the most important limiting factor. The result of GAMs analysis showed that abundance of O. tenuis, and copepodites were affected by Chl a, larval fishes and fish spawns; abundance of O. similis was affected by Chl a and fish spawns; and abundance of O. plumifera was affected by Chl a and larval fishes. Therefore, we suggest that the branch of SCS Monsoon Jet and deep water intrusion favor aggregation of plankton in the central SCS in summer. We confirm that the temperature is the limiting factor to the reproduction of the genus Oithona in tropic seas and the genus Oithona is a food-web linker between primary production and larval fishes in the central SCS.
Słowa kluczowe
Czasopismo
Rocznik
Strony
300--310
Opis fizyczny
Bibliogr. 83 poz., mapy, tab., wykr.
Twórcy
autor
  • South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
  • Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
  • Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environments, Ministry of Agriculture, Guangzhou, China
  • Key Laboratory of South China Sea Fishery Resources Development and Utilization, Ministry of Agriculture, Guangzhou, China
autor
  • South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
  • Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
  • Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environments, Ministry of Agriculture, Guangzhou, China
  • Key Laboratory of South China Sea Fishery Resources Development and Utilization, Ministry of Agriculture, Guangzhou, China
autor
  • South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
  • Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
  • Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environments, Ministry of Agriculture, Guangzhou, China
  • Key Laboratory of South China Sea Fishery Resources Development and Utilization, Ministry of Agriculture, Guangzhou, China
autor
  • South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
  • Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
  • Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environments, Ministry of Agriculture, Guangzhou, China
  • Key Laboratory of South China Sea Fishery Resources Development and Utilization, Ministry of Agriculture, Guangzhou, China
autor
  • South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
  • Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
  • Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environments, Ministry of Agriculture, Guangzhou, China
  • Key Laboratory of South China Sea Fishery Resources Development and Utilization, Ministry of Agriculture, Guangzhou, China
Bibliografia
  • [1] Ajiboye, O., Yakubu, A. F., Adams, T. E., Olaji, E. D., Nwogu, N. A., 2011. A review of the use of copepods in marine fish larviculture. Rev. Fish Biol. Fish. 21 (2), 225-246, http://dx.doi.org/10.1007/s11160-010-9169-3.
  • [2] Ambler, J. W., Ferrari, F. D., Fornshell, J. A., Buskey, E. J., 1999. Diel cycles of molting, mating, egg sac production and hatching in the swarm forming cyclopoid copepod Dioithona oculata. Plankt. Biol. Ecol. 46 (2), 120-127.
  • [3] Bao, L., Lu, Y., Wang, Y., Xu, H., 2005. Seasonal variations of upper ocean circulation over the South China Sea from satellite altimetry data of many years. Chin. J. Geophys. 48, 543-550, (in Chinese).
  • [4] Castellani, C., Irigoien, X., Mayor, D. J., Harris, R. P., Wilson, D., 2008. Feeding of Calanus finmarchicus and Oithona similis on the microplankton assemblage in the Irminger Sea, North Atlantic. J. Plankton Res. 30 (10), 1095-1116, http://dx.doi.org/10.1093/plankt/fbn074.
  • [5] Castro, L. R., Claramunt, G., González, H. E., Krautz, M. C., Llanos-Rivera, A., Méndez, J., Schneide, W., Scoto, S., 2010. Fatty acids in eggs od anchoveta Engraulis ringens during two contrasting winter spawning seasons. Mar. Ecol.-Prog. Ser. 420, 193-205, http://dx.doi.org/10.3354/meps08819.
  • [6] Champalbert, G. A., Kouamé, B., Pagano, M., Marchal, E., 2008. Feeding behavior of adult Vinciguerria nimbaria (Phosichthyidae), in the tropical Atlantic (08-48N, 158W). Mar. Biol. 156, 79-95, http://dx.doi.org/10.1007/s00227-008-1067-z.
  • [7] Chen, Z., 1979. Fish larvae and spawns in Xishao Islands and Zhongsha Islands waters. Fish. Sci. Technol. Inf. 4, 11-13, (in Chinese).
  • [8] Chen, C. C., Shiah, F. K., Chung, S. W., Liu, K. K., 2006. Winter phytoplankton blooms in the shallow mixed layer of the South China Sea enhanced by upwelling. J. Mar. Syst. 59 (1-2), 97-110, http://dx.doi.org/10.1016/j.jmarsys.2005.09.002.
  • [9] Chen, M., Liu, H., Song, S., Sun, J., 2015. Size-fractionated mesozooplankton biomass and grazing impact on phytoplankton in northern South China Sea during four seasons. Deep Res Pt. II 117, 108-118, http://dx.doi.org/10.1016/j.dsr2.2015.02.026.
  • [10] Chew, L. L., Chong, V. C., 2011. Copepod community structure and abundance in a tropical mangrove estuary, with comparisons to coastal waters. Hydrobiologia 666 (1), 127-143, http://dx.doi.org/10.1007/s10750-010-0092-3.
  • [11] Chew, L. L., Chong, V. C., Ooi, A. L., Sasekumar, A., 2015. Vertical migration and positioning behavior of copepods in a mangrowe estuary: interactions between tidal, diel light and lunar cycles. Estuar. Coast. Shelf Sci. 152, 142-152, http://dx.doi.org/10.1016/j.ecss.2014.11.011.
  • [12] Dahms, H. U., Tseng, L. C., Hwang, J. S., 2015. Biogeographic distribution of the cyclopoid copepod genus Oithona — from mesoscales to global scales. J. Exp. Mar. Biol. Ecol. 467, 26-32, http://dx.doi.org/10.1016/j.jembe.2015.02.009.
  • [13] Du, F., Wang, L., Wang, X., Ning, J., Gu, Y., Li, Y., 2016. Assemblage and abundance of Oithona and environmental factors in Nansha Islands waters, South China Sea. Oceanol. Limnol. Sin. 106-116, http://dx.doi.org/10.11693/hyhz20160700143 (in Chinese with English abstract).
  • [14] Dvoretsky, V. G., 2012. Seasonal mortality rates of Oithona similis (Cyclopoida) in a large Arctic fjord. Polar Sci. 6 (3-4), 263-269, http://dx.doi.org/10.1016/j.polar.2012.09.001.
  • [15] Dvoretsky, V. G., Dvoretsky, A. G., 2009. Life cycle of Oithona similis (Copepoda: Cyclopoida) in Kola Bay (Barents Sea). Mar. Biol. 156, 1433-1446, http://dx.doi.org/10.1007/s00227-009-1183-4.
  • [16] Dvoretsky, V. G., Dvoretsky, A. G., 2010. Mesozooplankton structure in Dolgaya Bay (Barents Sea). Polar Biol. 33 (5), 703-708, http://dx.doi.org/10.1007/s00300-009-0748-5.
  • [17] Dvoretsky, V. G., Dvoretsky, A. G., 2015. Interannual variations in abundance and biomass of planktonic copepods Oithona in the barents sea. Biol. Bull. 42 (5), 449-457, http://dx.doi.org/10.1134/S1062359015050052.
  • [18] Escribano, R., Hidalgo, P., González, H., Giesecke, R., Riquelme-Bugueño, R., Manríquez, K., 2007. Seasonal and inter-annual variation of mesozooplankton in the coastal upwelling zone off central-southern Chile. Prog. Oceanogr. 75 (3), 470-485, http://dx.doi.org/10.1016/j.pocean.2007.08.027.
  • [19] Fernández de Puelles, M. L., Macias, V., Vicente, L., Molinero, J. C., 2014. Seasonal spatial pattern and community structure of zooplankton in waters off the Baleares archipelago (Central Western Mediterranean). J. Mar. Syst. 138, 82-94, http://dx.doi.org/10.1016/j.jmarsys.2014.01.001.
  • [20] Fragopoulu, N., Lykakis, J. J., 1990. Vertical distribution and nocturnal migration of zooplankton in relation to the development of the seasonal thermocline in Patraikos Gulf. Mar. Biol. 104, 381-387, http://dx.doi.org/10.1007/BF01314340.
  • [21] Gong, Y., Chen, Z., Zhang, Z., Jiang, Y., 2015. Feeding habits of Diaphus chrysorhynchus from continental slope region in northern South China in autumn. South Chin. Fish. Sci. 90—107,(in Chinese).
  • [22] Hansen, F. C., Möllmann, C., Schütz, U., Hinrichsen, H. H., 2004. Spatio-temporal distribution of Oithona similis in the Bornholm Basin (Central Baltic Sea). J. Plankton Res. 26 (6), 659-668, http://dx.doi.org/10.1093/plankt/fbh061.
  • [23] Head, R. N., Medina, G., Huskin, I., Anadon, R., Harris, R. P., 2002. Phytoplankton and mesozooplankton distribution and composition during transects of the Azores Subtropical Front. Deep Res Pt. II 49, 4023-4034, http://dx.doi.org/10.1016/S0967-0645(02)00140-6.
  • [24] Hopcroft, R. R., Roff, J. C., 1996. Zooplankton growth rates: diel egg production in the copepods Oithona, Euterpina and Corycaeus from tropical waters. J. Plankton Res. 18 (5), 789-803, http://dx.doi.org/10.1093/plankt/18.5.789.
  • [25] Hopcroft, R. R., Roff, J. C., 1998. Zooplankton growth rates: the influence of size in nauplii of tropical marine copepods. Mar. Biol. 132 (1), 87-96, http://dx.doi.org/10.1007/s002270050374.
  • [26] Hopcroft, R. R., Roff, J. C., Lombard, D., 1998. Production of tropical copepods in Kingston Harbour, Jamaica: the importance of small species. Mar. Biol. 130 (4), 593-604, http://dx.doi.org/10.1007/s002270050281.
  • [27] Hunt, B. P. V., Hosie, G. W., 2006a. The seasonal succession of zooplankton in the Southern Ocean south of Australia, Part I: The seasonal ice zone. Deep Res Pt. I 53, 1182-1202, http://dx.doi.org/10.1016/j.dsr.2006.05.001.
  • [28] Hunt, B. P. V., Hosie, G. W., 2006b. The seasonal succession of zooplankton in the Southern Ocean south of Australia, Part II: The Sub-Antarctic to Polar Frontal Zones. Deep Res Pt. I 53 (7), 1203-1223, http://dx.doi.org/10.1016/j.dsr.2006.05.002.
  • [29] Hwang, J. S., Dahms, H. U., Tseng, L. C., Chen, Q. C., 2007. Intrusions of the Kuroshio Current in the northern South China Sea affect copepod assemblages of the Luzon Strait. J. Exp. Mar. Biol. Ecol. 352 (1), 12-27, http://dx.doi.org/10.1016/j.jembe.2007.06.034.
  • [30] Hwang, J. S., Kumar, R., Dahms, H. U., Tseng, L. C., Chen, Q. C., 2010. Interannual, seasonal, and diurnal variations in vertical and horizontal distribution patterns of 6 Oithona spp. (Copepoda: Cyclopoida) in the South China Sea. Zool. Stud. 49, 220-229.
  • [31] Hwang, J. S., López-López, L., Molinero, J. C., Tseng, L. C., Chen, Q. C., Hung, J. J., 2014. Copepod assemblages in the northern South China Sea during inter-monsoon transition periods. J. Sea Res. 86, 43-48, http://dx.doi.org/10.1016/j.seares.2013.10.012.
  • [32] Islam, M. S., Tanaka, M., 2009. Diet and prey selection in larval and juvenile Japanese anchovy Engraulis japonicus in Ariake Bay, Japan. Aquat. Ecol. 43 (2), 549-558, http://dx.doi.org/10.1007/s10452-008-9207-6.
  • [33] Kattner, G., Albers, C., Graeve, M., Schnack-Schiel, S. B., 2003. Fatty acid and alcohol composition of the small polar copepods, Oithona and Oncaea: indication on feeding modes. Polar Biol. 26 (10), 666-671, http://dx.doi.org/10.1007/s00300-003-0540-x.
  • [34] Ke, Z., Tan, Y., Ma, Y., Huang, L., Wang, S., 2014. Effects of Surface current patterns on spatial variations of phytoplankton community and environmental factors in Sunda shelf. Cont. Shelf Res. 82, 119-127, http://dx.doi.org/10.1016/j.csr.2014.04.017.
  • [35] Ke, Z., Tan, Y., Huang, L., 2016. Spatial variation of phytoplankton community from Malacca Strait to southern South China Sea in May of 2011. Acta Ecol. Sin. 36 (3), 154-159, http://dx.doi.org/10.1016/j.chnaes.2016.03.003.
  • [36] Lee, D. B., Choi, K. H., Ha, H. K., Yang, E. J., Lee, S. H., Lee, S., Shin, H. C., 2013. Mesozooplankton distribution patterns and grazing impacts of copepods and Euphausia crystallorophias in the Amundsen Sea, West Antarctica, during austral summer. Polar Biol. 36 (8), 1215-1230, http://dx.doi.org/10.1007/s00300-013-1314-8.
  • [37] León-Chávez, C. A., Sánchez-Velasco, L., Beier, E., Lavín, M. F., Godínez, V. M., Färber-Lorda, J., 2010. Larval fish assemblages and circulation in the Eastern Tropical Pacific in Autumn and Winter. J. Plankton Res. 32 (4), 397-410, http://dx.doi.org/10.1093/plankt/fbp138.
  • [38] Liao, G., Yuan, Y., Wang, Z., 2006. The three dimensional structure of the circulation in the South China Sea during the summer of 1998. Acta Oceanol. Sin. 28, 15-25, (in Chinese).
  • [39] Lipskaya, N. Y., 1987. Feeding of flyingfish (Exocoetidae) lar-vae and fingerlings in the region of the Peruvian up-welling. J. Ichthyol. 27 (3), 108-116.
  • [40] Loeb, V. J., 1979. Larval fishes in the zooplankton community of the North Pacific Central Gyre. Mar. Biol. 53 (2), 173-191, http://dx.doi.org/10.1007/bf00389188.
  • [41] Lonsdale, D. J., Caron, D. A., Dennett, M. R., Schaffner, R., 2000. Predation by Oithona spp. on protozooplankton in the Ross Sea, Antarctica. Deep Res Pt. II 47 (15-16), 3273-3283, http://dx.doi.org/10.1016/S0967-0645(00)00068-0.
  • [42] Lopes, R. M., Brandini, F. P., Gaeta, S. A., 1999. Distribution patterns of epipelagic copepods off Rio de Janeiro (SE Brazil) in summer 1991/1992 and winter 1992. Hydrobiologia 411, 161-174, http://dx.doi.org/10.1023/a:1003859107041.
  • [43] McKinnon, A. D., Ayukai, T., 1996. Copepod egg production and food resources in Exmouth Gulf, Western Australia. Mar. Freshw. Res. 47 (4), 595-603, http://dx.doi.org/10.1071/MF9960595.
  • [44] Mckinnon, A. D., Klumpp, D. W., 1998. Mangrove zooplankton of North Queensland, Australia I. Plankton community structure and environment. Hydrobiologia 362, 127-143, http://dx.doi.org/10.1023/A:1003186601878.
  • [45] McKinnon, A. D., Duggan, S., De'ath, G., 2005. Mesozooplankton dynamics in nearshore waters of the Great Barrier Reef. Estuar. Coast. Shelf Sci. 63 (4), 497-511, http://dx.doi.org/10.1016/j.ecss.2004.12.011.
  • [46] Metz, C., 1995. Seasonal variation in the distribution and abundance of Oithona and Oncaea species (Copepoda, Crustacea) in the southeastern Weddell Sea, Antarctica. Polar Biol. 15 (3), 187-194, http://dx.doi.org/10.1007/BF00239058.
  • [47] Nakamura, Y., Turner, J. T., 1997. Predation and respiration by the small cyclopoid copepod Oithona similis: how important is feeding on ciliates and heterotrophic flagellates? J. Plankton Res. 19 (9), 1275-1288, http://dx.doi.org/10.1093/plankt/19.9.1275.
  • [48] Nielsen, T. G., Andersen, C. M., 2002. Plankton community structure and production along a freshwater-influenced Norwegian fjord system. Mar. Biol. 141 (4), 707-724, http://dx.doi.org/10.1007/s00227-002-0868-8.
  • [49] Nishida, S., 1985. Taxonomy and distribution of the famliy Oithonidae (Copepoda, Cyclopoida) in the Pacific and Indian Oceans. Bull. Ocean Res. Inst. Univ. Tokyo 20, 1-167.
  • [50] Nunn, A. D., Tewson, L. H., Cowx, I. G., 2012. The foraging ecology of larval and juvenile fishes. Rev. Fish Biol. Fish. 22 (2), 377-408, http://dx.doi.org/10.1007/s11160-011-9240-8.
  • [51] Paffenhöfer, G. A., 1993. On the ecology of marine cyclopoid copepods (Crustacea, Copepoda). J. Plankton Res. 15 (1), 37-55, http://dx.doi.org/10.1093/plankt/15.1.37.
  • [52] Pedersen, T., Fossheim, M., 2008. Diet of 0-group stages of capelin (Mallotus villosus), herring (Clupea harengus) and cod (Gadus morhua) during spring and summer in the Barents Sea. Mar. Biol. 153 (6), 1037-1046, http://dx.doi.org/10.1007/s00227-007-0875-x.
  • [53] Pinkerton, M. H., Smith, A. N. H., Raymond, B., Hosie, G. W., Sharp, B., Leathwick, J. R., Bradford-Grieve, J. M., 2010. Spatial and seasonal distribution of adult Oithona similis in the Southern Ocean: predictions using boosted regression trees. Deep Res Pt. I 57 (4), 469-485, http://dx.doi.org/10.1016/j.dsr.2009.12.010.
  • [54] Pond, D. W., Ward, P., 2011. Importance of diatoms for Oithona in Antarctic waters. J. Plankton Res. 33 (1), 105-118, http://dx.doi.org/10.1093/plankt/fbq089.
  • [55] Porri, F., McQuaid, C. D., Froneman, W. P., 2007. Spatio-temporal variability of small copepods (especially Oithona plumifera) in shallow nearshore waters off the south coast of South Africa. Estuar. Coast. Shelf Sci. 72 (4), 711-720, http://dx.doi.org/10.1016/j.ecss.2006.12.006.
  • [56] Rezai, H., Yusoff, F. M., Arshad, A., Kawamura, A., Nishida, S., Ross, O. B. H., 2004. Spatial and temporal distribution of copepods in the Straits of Malacca. Zool. Stud. 43 (2), 486-497.
  • [57] Richardson, D. E., Llopiz, J. K., Leaman, K. D., Vertes, P. S., Muller-Karger, F. E., Cowen, R. K., 2009. Sailfish (Istiophorus platypterus) spawning and larval environment in a Florida Current frontal eddy. Prog. Oceanogr. 82 (4), 252-264, http://dx.doi.org/10.1016/j.pocean.2009.07.003.
  • [58] Rosas-Luis, R., Tafur-Jimernez, R., Alegre-Norza, A. R., Castillo-Valderrama, P. R., Cornejo-Urbina, R. M., Salinas-Zavala, C. A., Sanchez, P., 2011. Trophic relationships between the jumbo squid (Dosidicus gigas) and the lightfish (Vinciguerria lucetia) in the Humboldt Current System off Peru. Sci. Mar. 75 (3), 549-557, http://dx.doi.org/10.3989/scimar.2011.75n3549.
  • [59] Rowlands, W. L., Dickey-Collas, M., Geffen, A. J., Nash, R. D. M., 2008. Diet overlap and prey selection through metamorphosis in Irish Sea cod (Gadus morhua), haddock (Melanogrammus aeglefinus), and whiting (Merlangius merlangus). Can. J. Fish. Aquat. Sci. 65 (7), 1297-1306, http://dx.doi.org/10.1139/F08-041.
  • [60] Saiz, E., Calbet, A., Broglio, E., 2003. Effects of small-scale turbulence on copepods: the case of Oithona davisae. Limnol. Oceanogr. 48 (3), 1304-1311, http://dx.doi.org/10.4319/lo.2003.48.3.1304.
  • [61] Sánchez-Velasco, L., 1998. Diet composition and feeding habits of fish larvae of two co-occurring species (Pisces: Callionymidae and Bothidae) in the North-western Mediterranean. ICES J. Mar. Sci. 55 (2), 299-308, http://dx.doi.org/10.1006/jmsc.1997.0278.
  • [62] Shansudin, L., Yusof, M., Azis, A., Shukri, Y., 1997. The potential of certain indigenous copepod species as live food for commercial fish larval rearing. Aquaculture 151 (1-4), 351-356, http://dx.doi.org/10.1016/S0044-8486(96)01490-1.
  • [63] Spinelli, M. L., Pájaro, M., Martos, P., Esnal, G. B., Sabatini, M., Capitanio, F. L., 2012. Potential zooplankton preys (Copepoda and Appendicularia) for Engraulis anchoita in relation to early larval and spawning distributions in the Patagonian frontal system (SW Atlantic Ocean). Sci. Mar. 76 (1), 39-47, http://dx.doi.org/10.3989/scimar.2012.76n1039.
  • [64] Strasburger, W. W., Hillgruber, N., Pinchuk, A. I., Mueter, F. J., 2014. Feeding ecology of age-0 walleye pollock (Gadus chalcogrammus) and Pacific cod (Gadus macrocephalus) in the southeastern Bering Sea. Deep Res Pt. II 109, 172-180, http://dx.doi.org/10.1016/j.dsr2.2013.10.007.
  • [65] Takatsu, T., Nakatani, T., Mutoh, T., Takahashi, T., 1995. Feeding habits of Pacific cod larvae and juveniles in Mutsu Bay, Japan. Fish. Sci. 61 (3), 415-422.
  • [66] Temperoni, B., Viñas, M. D., Martos, P., Marrari, M., 2014. Spatial patterns of copepod biodiversity in relation to a tidal front system in the main spawning and nursery area of the Argentine hake Merluccius hubbsi. J. Mar. Syst. 139, 433-445, http://dx.doi.org/10.1016/j.jmarsys.2014.08.015.
  • [67] Truong, T. S.-H., Nguyen, C., Lam, N.-N., Jensen, K. T., 2013. Seasonal and spatial distribution of mesozooplankton in a tropical estuary, Nha Phu, South Central Viet Nam. Biologia (Bratisl.) 69 (1), 80-91, http://dx.doi.org/10.2478/s11756-013-0289-9.
  • [68] Tudela, S., Palomera, I., Quilez, G., 2002. Feeding of anchovy Engraulis encrasicolus larvae in the north-west Mediterranean. J. Mar. Biol. Assoc. U. K. 82, 349-350, http://dx.doi.org/10.1017/S0025315402005568.
  • [69] Turner, T., 1986. Zooplankton feeding ecology: contents of fecal pellets of the cyclopoid copepods Oncaea venusta, Corycaeus amazonicus, Oithona plumifera, and O. simplex from the Northern Gulf of Mexico. Mar. Ecol. 7 (4), 289-302, http://dx.doi.org/10.1111/j.1439-0485.1986.tb00165.x.
  • [70] Van Noord, J. E., Lewallen, E. A., Pitman, R. L., 2013. Flyingfishes feeding ecology in the eastern Pacific: prey partitioning within a speciose epipelagic community. J. Fish Biol. 83 (2), 326-342, http://dx.doi.org/10.1111/jfb.12173.
  • [71] Vilchis, L. I., Balance, L. T., Watson, W., 2009. Temporal variability of neustonic ichthyoplankton assemblages of the eastern Pacific warm pool: can community structure be linked to climate variability? Deep Res Pt. I 56 (1), 125-140, http://dx.doi.org/10.1016/j.dsr.2008.08.004.
  • [72] Viñas, M. D., Ramíres, F. C., 1996. Gut analysis of first-feeding anchovy larvae from Patagonian spawning area in relation to food availability. Arch. Fish. Mar. Res. 43 (3), 231-256.
  • [73] Wang, L., Du, F., Li, Y., Ning, J., Guo, W., 2015. Community characteristics of pelagic copepods in Nansha area before and after onset of Southwest Monsoon. South Chin. Fish. Sci. 11 (5), 47-66,(in Chinese).
  • [74] Ward, P., Shreeve, R. S., 1999. The spring mesozooplankton community at South Georgia: a comparison of shelf and oceanic sites. Polar Biol. 22 (5), 289-301, http://dx.doi.org/10.1007/s003000050422.
  • [75] Ward, P., Whitehouse, M., Shreeve, R., 2007. Plankton community structure south and west of South Georgia (Southern Ocean): links with production and physical forcing. Deep Res Pt. I 54 (11), 1871-1889, http://dx.doi.org/10.1016/j.dsr.2007.08.008.
  • [76] Wend-Heckmann, B., 2013. Oithona similis (Copepoda: Cyclopoida) — A Cosmopolitan Species? Universität Bremen, Bremen, 1-175.
  • [77] Williams, J. A., Muxagata, E., 2006. The seasonal abundance and production of Oithona nana (Copepoda:Cyclopoida) in Southampton Water. J. Plankton Res. 28 (11), 1055-1065, http://dx.doi.org/10.1093/plankt/fbl039.
  • [78] Williams, D. M., Dixon, P., English, S., 1988. Cross-shelf distribution of copepods and fish larvae across the central Great Barrier Reef. Mar. Biol. 99 (4), 577-589, http://dx.doi.org/10.1007/BF00392565.
  • [79] Xiang, R., Fang, W., Lu, Y., Huang, X., Zhou, S., 2015. Observed three-dimensional structures of a cold eddy and an eastward jet in the western South China Sea during September 2014. J. Trop. Ocean 34 (6), 1-10,(in Chinese).
  • [80] Zalkina, A. V., 1970. Vertical distribution and diurnal migration of some Cyclopoida (Copepoda) in the tropical region of the Pacific Ocean. Mar. Biol. 5 (4), 275-282.
  • [81] Zamora-Terol, S., Kjellerup, S., Swalethorp, R., Saiz, E., Nielsen, T. G., 2014a. Population dynamics and production of the small copepod Oithona spp. in a subarctic fjord of West Greenland. Polar Biol. 37 (7), 953-965, http://dx.doi.org/10.1007/s00300-014-1493-y.
  • [82] Zamora-Terol, S., McKinnon, A. D., Saiz, E., 2014b. Feeding and egg production of Oithona spp. in tropical waters of North Queensland, Australia. J. Plankton Res. 36 (4), 1047-1059, http://dx.doi.org/10.1093/plankt/fbu039.
  • [83] Zhou, L., Tan, Y., Huang, L., Lian, X., Qiu, D., Ke, Z., 2013. Size-based analysis for the state and heterogeneity of pelagic ecosystems in the northern South China Sea. J. Oceanogr. 69 (4), 379-393, http://dx.doi.org/10.1007/s10872-013-0180-x.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8c1138c-a2ec-495c-8032-99dae9e3d1ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.