PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An integrated wave modelling framework for extreme and rare events for climate change in coastal areas – the case of Rethymno, Crete

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coastal floods are regarded as among the most dangerous and harmful of all natural disasters affecting urban areas adjacent to the shorelines. Rapid urbanization combined with climate change and poor governance often results in significant increase of flood risk, especially for coastal communities. Wave overtopping and wave run-up are the key mechanisms for monitoring the results of coastal flooding and as such, significant efforts are currently focusing on their predicting. In this paper, an integrated methodology is proposed, accounting for wave overtopping and wave run-up under extreme wave scenarios caused by storm surges. By taking advantage of past and future climatic projections of wind data, a downscaling approach is proposed, utilizing a number of appropriate numerical models than can simulate the wave propagation from offshore up to the swash zone. The coastal zone of Rethymno in Greece is selected as a case study area and simulations of wave characteristics with the model SWAN for the period 1960–2100 in the offshore region are presented. These data are given as boundary conditions to further numerical models (MIKE21 PMS and HD) in order to investigate the spatial evolution of the wave and the hydrodynamic field in intermediate and shallow waters. Finally, the calculated wave height serves as input to empirical formulas and time dependent wave propagation models (MIKE21 BW) to estimate the wave run-up and wave overtopping (EurOtop). It is suggested that the proposed procedure is generic enough to be applicable to any similar region.
Czasopismo
Rocznik
Strony
71--89
Opis fizyczny
Bibliogr. 59 poz., rys., tab., wykr., fot., mapy
Twórcy
  • Laboratory of Harbor Works, National Technical University of Athens, Athens, Greece
autor
  • Laboratory of Harbor Works, National Technical University of Athens, Athens, Greece
  • School of Naval Architecture and Marine Engineering, National Technical University of Athens, Athens, Greece
autor
  • Laboratory of Harbor Works, National Technical University of Athens, Athens, Greece
autor
  • Laboratory of Hydrology & Water Resources Utilization, National Technical University of Athens, Athens, Greece
  • School of Naval Architecture and Marine Engineering, National Technical University of Athens, Athens, Greece
  • Laboratory of Hydrology & Water Resources Utilization, National Technical University of Athens, Athens, Greece
Bibliografia
  • 1.Anselme, B., Durand, P., Thomas, Y.-F., Nicolae Lerma, A., 2011. Storm extreme levels and coastal flood hazards: a parametric approach on the French coast of Languedoc (district of Leucate). C. R. Geosci. 343 (10), 677—690, http://dx.doi.org/10.1016/j. crte.2011.07.006.
  • 2.Archontakis, D., 2013. The Old Town of Rethymno: from a run down gheto to growth leverage of Rethymno. Rethymno, 12—18.
  • 3.Athanassoulis, G. A., Belibassakis, K. A., Gerostathis, Th. P., Kapelonis, Z. G., 2014. Application of SWAN wave model for climatic simulation of sea condition at coastal areas of the Mediterranean. In: 6th Panhellenic Conf. Coastal Zones Manage. Improvement, 24—27 November 2014, Athens, Greece, 345—364.
  • 4.Athanassoulis, G. A., Belibassakis, K. A., Gerostathis, Th. P., Kapelonis, Z. G., 2015. Wave climate analysis in the Mediterranean Sea based on wave model simulation driven by climatological winds. Technical Report WP 2.2. Res. Program CCSEAWAVS. (in Greek).
  • 5.Benoit, M., Marcos, F., Becq, F., 1996. Development of a third generation shallow-water wave model with unstructured spatial meshing. In: 25th Int. Conf. Coastal Eng., Orlando, 465—478.
  • 6.Booij, N., Ris, R. C., Holthuijsen, L. H., 1999. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. 104 (C4), 7649—7666, http://dx.doi.org/10.1029/ 98JC02622.
  • 7.Bouziotas, D., Rozos, E., Makropoulos, C., 2015. Water and the city: exploring links between urban growth and water demand management. J. Hydroinform. 17 (2), 176—192, http://dx.doi. org/10.2166/hydro.2014.053.
  • 8.Breilh, J.-F., Bertin, X., Chaumillon, E., Giloy, N., Sauzeau, T., 2014. How frequent is storm-induced flooding in the central part of the Bay of Biscay? Global Planet. Change 122, 161—175, http://dx. doi.org/10.1016/j.gloplacha.2014.08.013.
  • 9.Bretschneider, C. L., 1952. Revised wave forecasting relationships. In: Proc. 2nd Int. Conf. Coast. Eng., ASCE, Council Wave Res., Eng. Foundation, Berkeley, CA, 1—5.
  • 10.Bretschneider, C. L., 1958. Revisions in wave forecasting: deep and shallow water. In: Proc. 6th Int. Conf. Coast. Eng., Council on Wave research, University of California, Richmond, CA, 30—67.
  • 11.CEM, 2008. Coastal Engineering Manual. Coast. Eng. Res. Centre, US Army Corps Eng., Vicksburg, Mississippi, Part II, Chapter 2, 37—50; Chapter 4, 14—19.
  • 12.Chini, N., Stansby, P. K., 2012. Extreme values of coastal wave over-topping accounting for climate change and sea level rise. Coast. Eng. 65, 27—37, http://dx.doi.org/10.1016/j.coastaleng.2012. 02.009.
  • 13.De Michele, C., Salvadori, G., Passoni, G., Vezzoli, R., 2007. A multivariate model of sea storms using copulas. Coast. Eng. 54 (10), 734— 751, http://dx.doi.org/10.1016/j.coastaleng.2007.05.007.
  • 14.Dean, R. G., Dalrymple, R. A., 2004. Coastal Processes with Engineering Applications. Cambridge Univ. Press, 488 pp.
  • 15.DHI, 2007a. MIKE 21Boussinesq waves module: Scientific doc. Danish Hydraul. Instit., 1—24, (in Danish).
  • 16.DHI, 2007b. MIKE 21Parabolic Mild Slope module: Scientific doc. Danish Hydraul. Instit., 1—22.
  • 17.DHI, 2007c. MIKE 21Flow Model, HydroDynamic module: Scientific doc. Danish Hydraul. Instit., 1—60.
  • 18.Dolan, R., Davis, R. E., 1992. An intensity scale for Atlantic coast northeast storms. J. Coast. Res. 8 (4), 840—853, http://www. jstor.org/stable/4298040.
  • 19.Dolan, R., Davis, R. E., 1994. Coastal storm hazards. J. Coast. Res. (SI 12), 103—114, http://www.jstor.org/stable/25735593.
  • 20.EurOtop Manual, 2007. In: Allsop, N. W. H., Pullen, T., Bruce, T., van der Meer, J. W., Schüttrumpf, H., Kortenhaus, A (Eds.), Over-topping Manual; Wave Overtopping of Sea Defences and Related Structures — Assessment Manual, http://www.overtopping- manual.com/manual.html (accessed 10 December 2015).
  • 21.Evers, M., Jonoski, A., Maksimovic, C., Lange, L., Ochoa, S., Dinkneh, A. J., Cortés, Almoradie, A., van Andel, S. J., Simoes, N., Wang, L. P., Makropoulos, C., 2012. Collaborative modelling for active involvement of stakeholders in urban flood risk management. Nat. Hazards Earth Syst. Sci. 12 (9), 2821—2842, http://dx.doi. org/10.5194/nhess-12-2821-2012.
  • 22.Galanis, D., 2010. Registration and control of the meteorological facts of the Meteorogical Station of Chania. (Dipl. Thesis). Tech. Edu. Instit. Chania, http://nefeli.lib.teicrete.gr/browse/sefe/ sdfp/2010/GalanisDimitrios/ attached-document-1277730043-268059-19836/2010galanis.pdf (accessed 10 December 2015).
  • 23.Gallien, T. W., Sanders, B. F., Flick, R. E., 2014. Urban coastal flood prediction: integrating wave overtopping, flood defenses and drainage. Coast. Eng. 91, 18—28, http://dx.doi.org/10.1016/j. coastaleng.2014.04.007.
  • 24.GEBCO, 2009. Gridded Global Bathymetry Data. British Oceanographic Data Centre, Liverpool, https://www.bodc.ac.uk/data/ online_delivery/gebco/ (accessed 10 December 2015).
  • 25.Halsey, S. D., 1986. Proposed Classification Scale for Major Northeast Storms: East Coast USA, Based on Extent of Damage. Geol. Soc. Am., abstracts with programs (Northeastern section), 18, 21 pp.
  • 26.Karambas, T. V., 2015. Modelling of climate change impacts on coastal flooding/erosion, ports and coastal defence structures. Desalinat. Water Treat. 54 (8), 2130—2137, http://dx.doi.org/10.1080/ 19443994.2014.934115.
  • 27.Koftis, T. H., Prinos, P., Galiatsatou, P., Karambas, Th., 2015. An integrated methodological approach for the upgrading of coastal structures due to climate effects. In: E-proceedings of the 36th IAHR World Conference, 28 June—3 July, The Hague, the Netherlands.
  • 28.Kokkinos, D., Prinos, P., Galiatsatou, P., 2014. Assessment of coastal vulnerability for present and future climate conditions in coastal areas of the Aegean Sea. In: Paper Presented at the 11th Inter-national Conference on Hydroscience & Engineering: Hydro-Engineering for Environmental Challenges, http://www.thalis- ccseawavs.web.auth.gr/el/publications (accessed 10 December 2015).
  • 29.Kundzewicz, Z. W., 2014. Adapting flood preparedness tools to changing flood risk conditions: the situation in Poland. Oceanologia 56 (2), 385—407, http://dx.doi.org/10.5697/oc.56-2.385.
  • 30.Laudier, N. A., Thornton, E. B., MacMahan, J., 2011. Measured and modeled wave overtopping on a natural beach. Coast. Eng. 58 (9), 815—825, http://dx.doi.org/10.1016/j.coastaleng.2011.04.005.
  • 31.Li, F., van Gelder, P. H. A. J. M., Ranasinghe, R., Callaghan, D. P., Jongejan, R. B., 2014. Probabilistic modelling of extreme storms along Dutch coast. Coast. Eng. 86, 1—13, http://dx.doi.org/ 10.1016/j.coastaleng.2013.12.009.
  • 32.Long, J. W., Bakker, A. T. M., de Plant, N. G., 2014. Scaling coastal dune elevation changes across storm-impact regimes. Geophys. Res. Lett. 41 (8), 2899—2906, http://dx.doi.org/10.1002/2014GL059616.
  • 33.Lynett, P., Melby, J., Kim, D., 2010. An application of Boussinesq modeling to Hurricane wave overtopping and inundation. Ocean Eng. 37 (1), 135—153, http://dx.doi.org/10.1016/j.oceaneng. 2009.08.021.
  • 34.Majewski, D., Schrodin, R., 1994. Short description of the Europa-Modell (EM) and Deutschland-Modell (DM) of the DWD. Quarterly Bull. 1—31.
  • 35.Makropoulos, Ch., Tsoukala, V. K., Belibassakis, K., Lykoy, A., Chondros, M., Gougoura, P., 2015. Managing flood risk in coast cities through an integrated modelling framework supporting stake-holders' involvement: the case study of Rethymno. In: E-proceedings of the 36th IAHR World Conference, 28 June—3 July, The Hague, the Netherlands.
  • 36.Makropoulos, Ch., Tsoukala, V. K., Lykou, A., Chondros, M., Manojlovic, N., Vojinovic, Z., 2014. Extreme and rare events in coastal regions due to climate change — a case study application in Rethymno. In: Int. Conf. ADAPTto CLIMATE. 27—28 March 2014, Nicosia, Cyprus (e-proceedings: http://adapttoclimate.uest.gr/index.php/ proceedings1, last accessed 10 December 2015).
  • 37.Matias, A., Williams, J. J., Masselink, G., Ferreira, O., 2012. Over-wash threshold for gravel barriers. Coast. Eng. 63, 48—61, http:// dx.doi.org/10.1016/j.coastaleng.2011.12.006.
  • 38.McCabe, M., Stansby, P. K., Rogers, B. D., Cunningham, L. S., 2014. Boussinesq modelling of tsunami and storm wave impact. Proc. Inst. Civil Eng. — Eng. Comput. Mech. 167 (3), 106—116, http:// dx.doi.org/10.1680/eacm.13.00025.
  • 39.Mendoza, E. T., Jiménez, J. A., 2009. Regional vulnerability analysis of Catalan beaches to storms. Proc. Inst. Civil Eng. — Mar. En. 162 (3), 127—135, http://dx.doi.org/10.1680/maen.2009.162.3.127.
  • 40.Mendoza, E. T., Jiménez, J. A., 2006. Storm-induced beach erosion potential on the Catalonian Coast. J. Coast. Res. SI 48 (Proc. 3rd Spanish Conf. Coast. Geomorphol.), 81—88, http://www.jstor. org/stable/25737386.
  • 41.Mendoza, E. T., Jiménez, J. A., Mateo, J., 2011. A coastal storms intensity scale for the Catalan sea (NW Mediterranean). Nat. Hazards Earth Syst. Sci. 11 (9), 2453—2462, http://dx.doi.org/ 10.5194/nhess-11-2453-2011.
  • 42.Mendoza, E. T., Trejo-Rangel, M. A., Salles, P., Appendini, C. M., González, J. L., Torres-Freyermuth, A., 2013. Storm characterization and coastal hazards in the Yucatan Peninsula. J. Coast. Res. SI 65, 790—795.
  • 43.Oumeraci, H., Kortenhaus, A., Burzel, A., Naulin, M., Dassanayake, D. R., Jensen, J., Wahl, T., Mudersbach, C., Gönnert, G., Gerkensmeier, A. B., Fröhle, P., Ujeyl, G., 2015. XtremRisK — integrated flood risk analysis for extreme storm surges at open coasts and in estuaries: methodology, key results and lessons learned. Coast. Eng. J. 57 (1), 23 pp., http://dx.doi.org/10.1142/ s057856341540001x.
  • 44.Plant, N. G., Stockdon, H. F., 2015. How well can wave runup be predicted? Comment on Laudier et al. (2011) and Stockdon et al. (2006). J. Coast. Eng. 102, 44—48, http://dx.doi.org/10.1016/j. coastaleng.2015.05.001.
  • 45.Prinos, P., 2014. Climate change effects on the Greek seas and coastal areas — the research project THALIS-CCSEAWAVS. In: 6th Panhellenic Conference on Coastal Zones Management and Improvement, 24—27 November 2014, Athens, 315—324.
  • 46.Rangel-Buitrago, N., Anfuso, G., 2011. An application of Dolan and Davis (1992) classification to coastal storms in SW Spanish littoral. J. Coast. Res. SI 64, 1891—1895.
  • 47.Ris, R. C., Holthuijsen, L. H., Booij, N., 1999. A third-generation wave model for coastal regions: 2. Verification. J. Geophys. Res. 104 (C4), 7667—7681, http://dx.doi.org/10.1029/1998JC900123.
  • 48.RISC-KIT, 2015. Coastal Hazard Assessment Module, Deliverable No: D.2.1, Ref.: WP2 - Task 2.1, 113 pp., http://www.risckit.eu/np4/ file/23/RISCKIT_D.2.1_Coastal_Hazard_Asssessment.pdf.
  • 49.Saffir, H. S., 1977. Design and Construction Requirements for Hurricane Resistant Construction. ASCE, New York, Preprint No. 2830, 20 pp.
  • 50.Senechal, N., Coco, G., Bryan, K. R., Holman, R. A., 2011. Wave runup during extreme storm conditions. J. Geophys. Res. 116 (C7), C07032, http://dx.doi.org/10.1029/2010JC006819.
  • 51.Simpson, R. H., 1979. A proposed scale for ranking hurricanes by intensity. In: Minutes of the Eighth NOAA, NWS Hurricane Conference, Miami.
  • 52.Smith, R., Bates, P., Hayes, D., 2012. Evaluation of a coastal flood inundation model using hard and soft data. Environ. Modell. Softw. 30, 35—46, http://dx.doi.org/10.1016/j.envsoft.2011.11.008.
  • 53.Stockdon, H. F., Holman, R. A., 2011. Observations of wave runup, setup, and swash on natural beaches. USGS Data Ser. 602, http:// pubs.usgs.gov/ds/602/ (accessed 10 December 2015).
  • 54.Stockdon, H. F., Holman, R. A., Howd, P. A., Sallenger, A. H., 2006. Empirical parameterization of setup, swash, and runup. Coast. Eng. 53 (7), 573—588, http://dx.doi.org/10.1016/j.coastaleng.2005.12.005.
  • 55.Velikou, K., Tolika, K., Anagnostopoulou, C., Tegoulias, I., Vagenas, C., 2014. High resolution climate over Greece: assessment and future projections. In: 12th International Conference on Meteorology, Climatology and Atmospheric Physics (COMECAP 2014), Heraklion.
  • 56.WAMDI-Group, 1988. The WAM model — a third generation ocean wave prediction model. J. Phys. Oceanogr. 18 (12), 1775—1810, http:// dx.doi.org/10.1175/1520-0485(1988)018<1775:twmtgo>2.0.co;2.
  • 57.Warner, N., Tissot, P. E., 2012. Storm flooding sensitivity to sea level rise for Galveston Bay, Texas. Ocean Eng. 44, 23—32, http://dx. doi.org/10.1016/j.oceaneng.2012.01.011.
  • 58.Williams, J. A., Flather, R. A., 2004. The Operational Storm Surge Model: maintenance, performance and development, January 2003—March 2004. Proudman Oceanogr. Lab., Internal Doc. No. 164, 68 pp.
  • 59.Wiśniewski, B., Wolski, T., 2011. Physical aspects of extreme storm surges and falls on the Polish coast. Oceanologia 53 (1—TI), 373— 390, http://dx.doi.org/10.5697/oc.53-1-TI.373.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8c0c621-459b-4227-bf3e-9f93c7b3d0c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.