PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rock transport after an outburst and the fluidisation phenomenon – can it occur during a dolomite and gas outburst?

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rock and gas outburst is a phenomenon in which fragmented rock material is transported deep into a pit. The transport of rock material by gas is a two-phase process. The article deals with the fluidisation of rock material. Considerations on the fluidisation phenomenon were carried out, and experiments were performed to help clarify whether the fluidisation of dolomite is possible. In the last chapter, a discussion was carried out, and the results obtained were analysed regarding the possibility of occurrence in mine conditions.
Rocznik
Strony
621--638
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
  • Strata Mechanics Research Institute of the Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
  • AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] A. Koteras, J. Kabiesz, R. Patyńska, Natural hazards in underground coal mining in Poland against the background of the selected European countries of the world. Przegląd Górniczy 1, 15-30 (2015).
  • [2] J. Feng, E. Wang, H. Ding, Q. Huang, X. Chen, Deterministic seismic hazard assessment of coal fractures in underground coal mine: A case study. Soil Dynamics and Earthquake Engineering 129, 105921 (2020). DOI: https://doi.org/10.1016/j.soildyn.2019.105921.
  • [3] P. Małkowski, Z. Niedbalski, A comprehensive geomechanical method for the assessment of rockburst hazards in underground mining. International Journal of Mining Science and Technology 30 (3), 345-355, (2020). DOI: https://doi.org/10.1016/j.ijmst.2020.04.009.
  • [4] K. Kozieł, N. Skoczylas, K. Soroko, S. Gola, Gas and Dolomite Outbursts in Ore Mines – Analysis of the Phenomenon and the Energy Balance. Energies 13, 2999 (2020). DOI: https://doi.org/10.3390/en13112999.
  • [5] A. Gonet, S.A. Stryczek, Innovative Technology of Tight Liquidation of Workings on the Example of the Wieliczka Salt Mine. Archives of Mining Sciences 66 (1), 3-12 (2021). DOI: https://doi.org/10.24425/ams.2021.136688.
  • [6] T. Janoszek, J. Krawczyk, Methodology Development and Initial Results of CFD Simulations of Methane Distribution in the Working of a Longwall Ventilated in a Short “Y” Manner. Archives of Mining Sciences 67 (1), 3-24 (2022). DOI: https://doi.org/10.24425/ams.2022.140699.
  • [7] R. Lama, J. Bodziony, Management of outburst in underground coal mines. International Journal of Coal Geology 35 (1-4), 83-115 (1998). DOI: https://doi.org/10.1016/S0166-5162(97)00037-2.
  • [8] J. Topolnicki, M. Wierzbicki, N. Skoczylas, Wyrzuty skalno-gazowe w świetle badań laboratoryjnych i pomiarów kopalnianych. Archives of Mining Sciences 49, 99-116 (2004).
  • [9] A. Kidybiński, The effect of porosity and the strength of coal on the dynamics of coal and methane outburst – The bpm modeling. Archives of Mining Sciences 56, 415-426 (2011).
  • [10] N. Skoczylas, Laboratory study of the phenomenon of methane and coal outburst. International Journal of Rock Mechanics and Mining Sciences 55, 102-107 (2012). DOI: https://doi.org/10.1016/j.ijrmms.2012.07.005.
  • [11] N. Skoczylas, Estimating gas and rock outburst risk on the basis of knowledge and experience – the expert system based on fuzzy logic. Archives of Mining Sciences 59 (1), 41-52 (2014). DOI: https://doi.org/10.2478/amsc-2014-0003.
  • [12] X. Pan, H. Cheng, J. Chen, X. Zhou, An experimental study of the mechanism of coal and gas outbursts in the tectonic regions. Engineering Geology 279, 105883 (2020). DOI: https://doi.org/10.1016/j.enggeo.2020.105883.
  • [13] L. Wang, Z. Lu, D. Chen, Q. Liu, P. Chu, L. Shu, B. Ullah, Z. Wen, Safe strategy for coal and gas outburst prevention in deep-and-thick coal seams using a soft rock protective layer mining. Safety Science 129, 104800 (2020). DOI: https://doi.org/10.1016/j.ssci.2020.104800.
  • [14] M. Gawor, S. Wasilewski, Investigations of dynamic properties of an integrated methane and rock outburst sensor. Measurement 186, 110178 (2021). DOI: https://doi.org/10.1016/j.measurement.2021.110178.
  • [15] W. Wang, H. Wang, B. Zhang, S. Wang, W. Xing, Coal and gas outburst prediction model based on extension theory and its application. Process Safety and Environmental Protection 154, 329-337 (2021). DOI: https://doi.org/10.1016/j.psep.2021.08.023.
  • [16] L. Shu, K. Wang, Z. Liu, W. Zhao, N. Zhu, Y. Lei, A novel physical model of coal and gas outbursts mechanism: Insights into the process and initiation criterion of outbursts. Fuel 323, 124305 (2022). DOI: https://doi.org/10.1016/j.fuel.2022.124305.
  • [17] G. Zhang, E. Wang, Ch. Zhang, Z. Li, D. Wang, A comprehensive risk assessment method for coal and gas outburst in underground coal mines based on variable weight theory and uncertainty analysis. Process Safety and Environmental Protection 167, 97-111 (2022). DOI: https://doi.org/10.1016/j.psep.2022.08.065.
  • [18] K. Kozieł, A. Nowakowski, L. Sitek, N. Skoczylas, Rock and Gas Outbursts in Copper Mines: Use of Brazilian Tests to Evaluate the Work of Disintegration of Rock Resulting from Stresses Produced by Gas Present in its Porous Structure. Rock Mechanics and Rock Engineering 55, 6209-6225 (2022). DOI: https://doi.org/10.1007/s00603-022-02955-z.
  • [19] Ch. Fan, S. Li, M. Luo, W. Du, Z. Yang, Coal and gas outburst dynamic system. International Journal of Mining Science and Technology 27 (1), 49-55 (2017). DOI: https://doi.org/10.1016/j.ijmst.2016.11.003.
  • [20] D.J. Black, Review of coal and gas outburst in Australian underground coal mines. International Journal of Mining Science and Technology 29 (6), 815-824 (2019). DOI: https://doi.org/10.1016/j.ijmst.2019.01.007.
  • [21] E.Y. Wang, P. Chen, Z.T. Liu, Y.J. Liu, Z.H. Li, X.L. Li, Fine detection technology of gas outburst area based on direct current method in Zhuxianzhuang Coal Mine, China. Safety Science 115, 12-18 (2019). DOI: https://doi.org/10.1016/j.ssci.2019.01.018.
  • [22] Ch. Zhang, E. Wang, J. Xu, S. Peng, A new method for coal and gas outburst prediction and prevention based on the fragmentation of ejected coal. Fuel 287, 119493 (2021). DOI: https://doi.org/10.1016/j.fuel.2020.119493.
  • [23] J. Drzymala, P.B. Kowalczuk, M. Oteng-Peprah, D. Foszcz, A. Muszer, T. Henc, A. Luszczkiewicz, Application of the grade-recovery curve in the batch flotation of Polish copper ore. Minerals Engineering 49, 17-23 (2013). DOI: https://doi.org/10.1016/j.mineng.2013.04.024.
  • [24] W. Kaczmarek, M. Twardowski, M. Wasilewska-Błaszczyk, Practical aspects of lithological types modelling in cu-ag ore lgom deposit (legnica-głogów copper district). Biuletyn Państwowego Instytutu Geologicznego 468, 209-226 (2017). DOI: https://doi.org/10.5604/01.3001.0010.0113.
  • [25] A. Pajdak, K. Godyń, M. Kudasik, T. Murzyn, The use of selected research methods to describe the pore space of dolomite from copper ore mine, Poland. Environmental Earth Sciences 76, 389 (2017). DOI: https://doi.org/10.1007/s12665-017-6724-4.
  • [26] W. Kaczmarek, M. Wasilewska-Błaszczyk, M. Dudek, The impact of lithological variability of reservoir rocks on the quality parameters of the Cu-Ag deposit, Lubin-Głogów Copper District (LGCD). Biuletyn Państwowego Instytutu Geologicznego 472, 105-120 (2018). DOI: https://doi.org/10.5604/01.3001.0012.6919.
  • [27] S. Speczik, K. Zieliński, T. Bieńko, A. Pietrzela: The prospecting strategy for a deep Cu-Ag ore deposit in Poland – An anatomy of success. Ore Geology Reviews 131, 104053 (2021). DOI: https://doi.org/10.1016/j.oregeorev.2021.104053.
  • [28] A. Mirek, M. Laskowski, A. Respondek, A. Hryciuk, Wyrzut gazów i skał z O/ZG „Rudna” – incydent czy tendencja? Prace Nauk. GIG: Górnictwo i Środowisko 4/3, 275-288 (2010).
  • [29] M. Wierzbicki, M. Młynarczuk, Structural aspects of gas and dolomite outburst in Rudna copper mine, Poland. International Journal of Rock Mechanics and Mining Sciences 57, 113-118 (2013). DOI: https://doi.org/10.1016/j.ijrmms.2012.08.007.
  • [30] M. Biliński, A. Hryciuk, M. Laskowski, A. Mirek, Zagrożenie wyrzutami w KGHM „Polska Miedź” S.A. O/ZG „Rudna” – stan po czterech latach od wyrzutu. Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie 1, 24-28 (2015).
  • [31] K. Król, G. Dzik, Zagrożenie gazogeodynamiczne i sposoby jego zwalczania w kopalniach rud miedzi w świetle prac zespołu doradczo-opiniodawczego ds. analizy zjawisk gazogeodynamicznych w KGHM Polska Miedź S.A. Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie 5, 2-9 (2020).
  • [32] B. Beamish, P.J. Crosdale, Instantaneous outbursts in underground coal mines: An overview and association with coal type. International Journal of Coal Geology 35, 27-55 (1998). DOI: https://doi.org/10.1016/S0166-5162(97)00036-0.
  • [33] Y. Cao, G.D. Mitchell, A. Davis, D. Wang, Deformation metamorphism of bituminous and anthracite coals from China. International Journal of Coal Geology 43 (1-4), 227-242 (2000). DOI: https://doi.org/10.1016/S0166-5162(99)00061-0.
  • [34] S. Li, T. Zhang, Catastrophic mechanism of coal and gas outbursts and their prevention and control. Mining Science and Technology (China) 20 (2), 209-214 (2010). DOI: https://doi.org/10.1016/S1674-5264(09)60186-1.
  • [35] M. Kudasik, N. Skoczylas, Analyzer for measuring gas contained in the pore space in rocks. Measurement Science and Technology 28 (10), 105901 (2017). DOI: https://doi.org/10.1088/1361-6501/aa812d.
  • [36] K. Kozieł, J. Topolnicki, N. Skoczylas, The Intensity of Heat Exchange between Rock and Flowing Gas in Terms of Gas-Geodynamic Phenomena. Entropy 23, 556 (2021). DOI: https://doi.org/10.3390/e23050556.
  • [37] J. Topolnicki, M. Wierzbicki, Transport sedymentacyjny mas powyrzutowych. Prace Instytutu Mechaniki Górotworu PAN 18 (3), 67-73 (2016).
  • [38] K. Kozieł, J. Janus, Force Exerted by Gas on Material Ejected During Gas-geodynamic phenomena. Analysis and Experimental Verification of Theory. Archives of Mining Sciences 67 (3), 491-508 (2022). DOI: https://doi.org/10.24425/ams.2022.142412.
  • [39] J. Topolnicki, M. Wierzbicki, N. Skoczylas, J. Sobczyk, Badania kinetyki uwalniania metanu z próbek węglowych pochodzących z wybranych miejsc w pokładzie 409/3 kopalni „Zofiówka”. Prace Instytutu Mechaniki Górotworu PAN 7 (3-4), 203-214 (2005).
  • [40] S. Wang, D. Elsworth, J. Liu, Rapid decompression and desorption induced energetic failure in coal. Journal of Rock Mechanics and Geotechnical Engineering 7, 345-350 (2015). DOI: http://dx.doi.org/10.1016/j.jrmge.2015.01.004.
  • [41] W. Zhao, Y.P. Cheng, H.N. Jiang, K. Jin, H.F. Wang, L. Wang, Role of the rapid gas desorption of coal powders in the development stage of outbursts. Journal of Natural Gas Science and Engineering 28, 491-501 (2016). DOI: https://doi.org/10.1016/j.jngse.2015.12.025.
  • [42] L.H. Xu, C.L. Jiang, Initial desorption characterization of methane and carbon dioxide in coal and its influence on coal and gas outburst risk. Fuel 203, 700-706 (2017). DOI: https://doi.org/10.1016/j.fuel.2017.05.001.
  • [43] D.D. Yang, Y.J. Chen J., Tang, X.W. Li, C.L. Jiang, C.J. Wang, C.J. Zhang, Experimental research into the relationship between initial gas release and coal-gas outbursts. Journal of Natural Gas Science and Engineering 50, 157-165 (2018). DOI: https://doi.org/10.1016/j.jngse.2017.12.015.
  • [44] B. Zhou, J. Xu, F. Yan, S. Peng, Y. Gao, Q. Li, L. Cheng, Effects of gas pressure on dynamic response of two-phase flow for coal-gas outburst. Powder Technology 377, 55-69 (2021). DOI: https://doi.org/10.1016/j.powtec.2020.08.065.
  • [45] S.K. Gupta, V.K. Agarval, S.N. Singh, V. Seshardi, D. Mills, J. Singh, Ch. Prakash, Prediction of minimum fluidization velocity for fine tailings materials. Powder Technology 196 (3), 263-271 (2009). DOI: https://doi.org/10.1016/j.powtec.2009.08.003.
  • [46] Z. Orzechowski, J. Prywer, R. Zarzycki, Mechanika płynów w inżynierii środowiska. Wydawnictwo Naukowe PWN, ISBN/ISSN: 9788301198480 (2018).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8bdfcba-c165-4399-843b-b8a86caa0770
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.