PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FTIR and Raman spectroscopic study of a complex perovskite: Ca0.91-xCe0.09Rb0.04Csx [(Zr0.50Ti0.45)Al0.05]O3, x=0.2 to 0.4, dedicated for radioactive waste confinement

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Perovskite is able to sequester simultaneously, in its structure, both actinides and alkaline-earth elements. This study is an attempt to synthesize a complex perovskite Ca0.91-xCe0.09Rb0.04Csx [(Zr0.50Ti0.45)Al0.05]O3 (0.2≤x≤0.4), doped in the same time, with Ce, Cs and Rb. The synthesis is conducted by sintering at 1150°C during 16h. XRX analysis confirms the perovskite formation. SEM observations show a less porous microstructure. FTIR analysis reveals TiO6, Ti-O-Ti, Ti-O and Zr-O vibrations. Raman spectroscopy indicates many orthorhombic perovskite active modes, as: Ti-O6 and Ti-O3 torsions, ZrO7, CaO8 vibrations, the totally symmetric oxygen, and the O-octahedron cage rotation.
Rocznik
Strony
81--94
Opis fizyczny
Bibliogr. 73 poz., wykr., rys.
Twórcy
autor
  • Chahid Abderrahmane Taleb Military Polytechnique School, Algiers, Algeria
autor
  • Algiers Nuclear Research Center, Division of Environment, Safety, and Radioactive Waste, Algiers, Algeria
autor
  • Algiers Nuclear Research Center, Division of Environment, Safety, and Radioactive Waste, Algiers, Algeria
autor
  • Algiers Nuclear Research Center, Division of Environment, Safety, and Radioactive Waste, Algiers, Algeria
autor
  • Algiers Nuclear Research Center, Division of Environment, Safety, and Radioactive Waste, Algiers, Algeria
autor
  • Algiers Nuclear Research Center, Division of Environment, Safety, and Radioactive Waste, Algiers, Algeria
Bibliografia
  • 1. Grote R., Zhao M., Shuller-Nickles L., Amoroso J., Gong W., Lilova K., Navrotsky A., Tang M., Brinkman K. S.: Compositional control of tunnel features in hollandite-based ceramics: structure and stability of (Ba,Cs)1.33(Zn,Ti)8O16. Journal of Materials Science volume 54 (2019) 1112-1125.
  • 2. Carter M.: Tetragonal to monoclinic phase transformation at room temperature in BaxFe2xTi8−2xO16 hollandite due to increased Ba occupancy. Materials Research Bulletin 39 (2004) 1075-1081.
  • 3. Hart K.P., Vance E.R., Day R.A., Begg B.D., Angel P.J.: Immobilization of Separated Tc and Cs/Sr in SYNROC. Materials Research Society Symposium Proceedings 412 (1996) 281-287.
  • 4. Aubin-Chevaldonnet V., Caurant D., Dannoux A., Gourier D., Charpentier T., Mazerolles L., Advocat T.: Preparation and characterization of (Ba,Cs)(M,Ti)8O16 (M=Al3+, Fe3+, Ga3+,Cr3+,Sc3+,Mg2+) hollandite ceramics developed for radioactive cesium immobilization. Journal of Nuclear Materials 366 (2007) 137-160.
  • 5. Amoroso J., Marra J., Conradson S.D., Tang M., Brinkman K.: Melt processed single phase hollandite waste forms for nuclear waste immobilization: Ba1.0Cs0.3A2.3Ti5.7O16; A=Cr, Fe, Al. Journal of Alloys and Compounds 584 (2014) 590-599.
  • 6. Luo S., Li L., Tang B., Wang D.: Synroc immobilization of high level waste (HLW) bearing a high content of sodium. Waste Management 18 (1998) 55-59.
  • 7. Smyth D.M.: Defects and order in perovskite-related oxides. Annual Review of Materials Science 15 (1985) 329-357.
  • 8. Goldschmidt V.M.: Original aufsätze und berichte reine und technis change wandte chemie und physic alische chemie. Naturwissenschaften 14 (1926) 477-485.
  • 9. Goldschmidt V.M.: Geochemische verteilungssgesetze der elementer VII. Skrifter der Norske Videnskaps Akademi Klasse 1, Matematisk Naurvidenskaplig Klasse, Oslo, 1926.
  • 10. Mitchell R.H., Welch M.D., Chakhmouradian A.R.: Nomenclature of the perovskite supergroup: A hierarchical system of classification based on crystal structure and composition. Mineralogical Magazine 81 (2017) 411-461.
  • 11. Roy R.: Multiple ion substitution in the perovskite lattice. Journal of American Ceramic Society 37 (1954) 581-588.
  • 12. Park N.G.: Perovskite solar cells: an emerging photovoltaic technology. Materials Today 18 (2015) 65-72.
  • 13. Nowick A.S., Du Y.: High-temperature protonic conductors with perovskite-related structures. Solid State Ionics 77 (1995) 137-146.
  • 14. Barinova T.V., Borovinskaya I.P., Ratnikov V.I., Ignatjeva T.I., Zakorzhevsky V.V.: SHS Immobilization of radioactive wastes. Key Engineering Materials 217 (2002) 193-200.
  • 15. Zheng H., Csete de Györgyfalva G.D., Quimby, R., Bagshaw, H., Ubic, R., Reaney, I.M, Yarwood J.: Raman spectroscopy of B-site order–disorder in CaTiO3-based microwave ceramics. Journal of the European Ceramic Society 23 (2003) 2653-2659.
  • 16. Aishah S., Hussin R.: Structural studies of calcium titanate phosphor doped with praseodymium using fourier transform infrared (FTIR) spectroscopy and fourier transform Raman spectroscopy. https://inis.iaea.org/collection/NCLCollectionStore/_Public/47/114/47114960.pdf.
  • 17. Sithole M.N., Omondi B., Ndungu P.G.: Synthesis and characterization of Ce0.6Sr0.4Fe0.8Co0.2O3–δ perovskite material: Potential cathode material for low temperature SOFCs. Journal of Rare Earths 35 (2017) 389-396.
  • 18. Shahzad M.A., Shahid M., Bibi I., Khan M.A., Nawaz M.A., Aboud M.F.A., Asghar M., Paracha R.N., Warsi M.F.: The effect of rare earth Dy3+ ions on structural, dielectric and electrical behavior of new nanocrystalline PbZrO3 perovskites. Ceramics International 43 (2017) 1073-1079.
  • 19. Philipp J.B., Majewski P., Alff L., Erb A., Gross R.: Structural and doping effects in the half-metallic double perovskite A2CrWO6 (A=Sr, Ba, and Ca). Physical Review B 68 (2003) 144431 1-13.
  • 20. Mao Y., Zhou H., Wong S.S.: Synthesis, properties, and applications of perovskite-phase metal oxide nanostructures. Material Matters 5 (2010) 50-54.
  • 21. Teng Y., Wang S., Huang Y., Zhang K.: Low-temperature reactive hot-pressing of cerium-doped titanate composite ceramics and their aqueous stability. Journal of the European Ceramic Society 34 (2014) 985-990.
  • 22. Donald I.W., Metcalfe B.L., Taylor R.N.J.: The immobilization of high level radioactive wastes using ceramics and glasses. Journal of Materials Science 32 (1997) 5851-5887.
  • 23. Xu H., Wang, Y.: Crystallization sequence and microstructure evolution of Synroc samples crystallized from CaZrTi2O7 melts. Journal of Nuclear Materials 279 (2000) 100-106.
  • 24. Wang S., Teng Y., Wu L., Zhang K., Ren X., Yang H., Xu L.: Incorporation of cerium in zirconolite-sphene Synroc. Journal of Nuclear Materials 443 (2013) 424-427.
  • 25. Ringwood A.E., Kesson S.E., Ware N.G., Hibberson W., Major A.: Immobilisation of high level nuclear reactor wastes in SYNROC. Nature Journal 278 (1979) 219-223.
  • 26. Meng C., Ding X., Li W., Zhao J., Yang H.: Phase structure evolution and chemical durability studies of Ce-doped zirconolite–pyrochlore synroc for radioactive waste storage. Journal of Materials Science 51 (2016) 5207-5215.
  • 27. Lee W.E., Ojovan M.I., Stennett M.C., Hyatt N.C.: Immobilisation of radioactive waste in glasses, glass composite materials and ceramics. Advances in Applied Ceramics 105 (2006) 3-12.
  • 28. Ewing R.C., Weber W.J., Lian J.: Nuclear waste disposal pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and ‘‘minor’’ actinides. Journal of Applied Physics 95 (2004) 5949-5971.
  • 29. Dosch R.G., Headley T.J., Hlava, P.: Crystalline titanate ceramic nuclear waste forms: Processing and Microstructure. Journal of the American Ceramic Society 67 (1984) 354-361.
  • 30. Ryerson F.J.: Microstructure and mineral chemistry of Synroc-D. Journal of the American Ceramic Society 66 (1983) 629-636.
  • 31. Campbell J., Hoenig C., Bazan F., Ryerson F., Guinan M., Van Konynenburg R., Rozsa R.: Properties of SYNROC-D nuclear waste form: A state-of-the-art review. Lawrence Livermore National Laboratory, Livermore, CA, Rept. No. UCRL-53240, 1982.
  • 32. Morgan P.E.D., Clarke D.R., Jantzen C.M., Harker A.B.: High-alumina tailored nuclear waste ceramics. Journal of the Americam Ceramic Society 64 (1981) 249-258.
  • 33. Van Konynenburg R.A., Guinan M.W.: Radiation effects in SYNROC-D. Lawrence Livermore National Laboratory, Livermore, CA, Rept. No. UCRL-86679, 1981.
  • 34. Hench L.L., Clark D.E., Campbell J.: High level waste immobilization forms. Nuclear and Chemical Waste Management 5 (1984) 149-173.
  • 35. Kesson S.E., Ringwood A.E.: Immobilization of HLW in Synroc-E. Proc. 26th Mat. Res. Soc. Symp. Proc. Symposium D-Scientific Basis for Nuclear Waste Management, Boston, Massachusetts, USA, 1983, pp. 507-512.
  • 36. Atkins P.H.W.: Ceramic materials for the immobilization of high-level radioactive waste, Master of Science Thesis, Birmingham University, Birmingham, 2016.
  • 37. Abramova A., Nikolenko M., Barré M.: Synthèse et caractérisation des conducteurs au lithium nanostructurés (French Edition), Editions Universitaires Européennes, Beau Bassin-Mauritus, 2014.
  • 38. Le T.N.H., Roffat M., Pham Q.N., Kodjikian S., Bohnke O., Bohnke C.: Synthesis of the perovskite ceramic Li3xLa2/3–xTiO3 by a chemical solution route using a triblock copolymer surfactant. Journal of Sol-Gel Science Technology 46 (2008) 137-145.
  • 39. Pechini M.P.: Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, US Patent 3, 330, 697, 1967.
  • 40. Ringwood A.E.: Disposal of high-level nuclear wastes: a geological perspective. Mineralogical Magazine 49 (1985) 159-176.
  • 41. Carpenter M.A., Howard C.J., Knight K.S., Zhang Z.: Structural relationships and a phase diagram for (Ca,Sr)TiO3 perovskites. Journal of Physics: Condensed Matter 18 (2006) 10725-10749.
  • 42. Levy M.: Crystal structure and defect properties in ceramic materials. Chapter 3: Perovskite Perfect Lattice, PhD Thesis, Imperial College of London, London, 2005.
  • 43. Hines R.I., Allan N.L., Flavell W.R.: Potentials for B-metal compounds: The stannates ASnO3 (A=Ca, Sr or Ba) and SnO2. Philosophical Magazine Part B 73 (1996) 33-39.
  • 44. Galasso F.S.: Structure, properties, and preparation of perovskite-type compounds, Pergamon Press, London, 1969.
  • 45. Shannon R.T.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A32 (1976) 751-767.
  • 46. Philips X’Pert High Score Package. Diffraction Data CD-ROM. JCPDS, PCPDF win, International Center for Diffraction Data [ed.], Newtown Square, 2004.
  • 47. OMNIC software. 7.3 Version, Thermo-Election-Corporation, Nicolet instrument, Waltham, 1992-2006.
  • 48. Shrivastava O.P., Kumar N., Sharma I.B.: Synthesis and structural refinement of polycrystalline ceramic powder Pr0.1Ca0.9TiO3. Materials Research Bulletin 40 (2005) 731-741.
  • 49. Shrivastava O.P., Srivastava R.: Synthesis, characterization and leach rate study of polycrystalline calcium strontium titanate ceramic powder. Progress in Crystal Growth Characterization Matererials 45 (2002) 103-106.
  • 50. Zhang R., Guo Z., Jia C., Lu G.: Immobilization of radioactive wastes into perovskite Synrock by the SHS method. Matererials Science Forum 475-479 (2005) 1627-1630.
  • 51. Carpenter M.A., Becerro A.I., Seifert F.: Strain analysis of phase transitions in (Ca,Sr)TiO3 perovskites. American Mineralogist 86 (2001) 348-363.
  • 52. Harrison R.J., Redfern S.A.T., Street J.: The effect of transformation twins on the seismic-frequency mechanical properties of polycrystalline Ca1−xSrxTiO3 perovskite. American Mineralogist 88 (2003) 574-582.
  • 53. Howard C.J., Withers R.L., Zhang Z., Osaka K., Kato K., Takata M.: Space-group symmetry for the perovskite Ca0.3Sr0.7TiO3. Journal of Physics: Condensed Matter 17 (2005) L459-465.
  • 54. Hirata T., Ishioka K., Kitajima M.: Vibrational spectroscopy and x-ray diffraction of perovskite compounds Sr1−xMxTiO3 (M=Ca, Mg; 0≤x≤1). Journal of Solid State Chemistry 124 (1996) 353-359.
  • 55. Mitsui T., Westphal W.B.: Dielectric and x-ray studies of CaxBa1−xTiO3 and CaxSr1−xTiO3. Physical Review 124 (1961) 1354-1359.
  • 56. Mishra S.K., Ranjan R., Pandey D., Ranson P., Ouillon R., Pinan-Lucarre J-P., Pruzan P.: Resolving the controversies about the ‘nearly cubic’ and other phases of Sr1−xCaxTiO3 (0≤x≤1): II Comparison of phase transition behaviours for x=0.40 and 0.43. Journal of Physics: Condensed Matter 18 (2006) 1899-1912.
  • 57. Mc Quarrie M.: Structural behavior in the system (Ba,Ca,Sr)TiO3 and its relation to certain dielectric characteristics. Journal of the American Ceramic Society 38 (1955) 444-449.
  • 58. Ranson P., Ouillon R., Pinan-Lucarre J.-P., Pruzan Ph., Mishra S.K., Ranjan R., Pandey D.: The various phases of the system Sr1−xCaxTiO3 - A Raman scattering study. Journal of Raman Spectroscopy 36 (2005) 898-911.
  • 59. Ranjan R., Pandey D., Schuddinck W., Richard O., De Meulenaere P., Van Landuyt J., Van Tendeloo G.: Evolution of crystallographic phases in (Sr1−xCax)TiO3 with composition (x). Journal of Solid State Chemistry 162 (2001) 20-28.
  • 60. Woodward D.I., Wise P.L., Lee W.E., Reaney I.M.: Space group symmetry of (CaxSr1−x)TiO3 determined using electron diffraction. Journal of Physics: Condensed Matter 18 (2006) 2401-2408.
  • 61. Hussin R., Salim M.A., Alias N.S., Abdullah M.S., Abdullah S. Ahmad Fuzi S.A., Hamdan S., Yusuf M.N.M.: Vibrational studies of calcium magnesium ultraphosphate glasses. Journal of Fundamental Science 5 (2009) 41-53.
  • 62. Low I.M., Mc Pherson R.: Crystallization of gel-derived alumina and alumina–zirconia ceramics. Journal of Materials Science 24 (1989) 892-898.
  • 63. Peng C., Hou Z., Zhang C., Li G., Lian H., Cheng Z., Lin J.: Synthesis and luminescent properties of CaTiO3: Pr3+ microfibers prepared by electrospinning method. Optic Express 18 (2010) 7543-7553.
  • 64. Lozano-Sánchez L.M., Lee S.W., Sekino T., Rodriguez Gonzalez V.: Practical microwave-induced hydrothermal synthesis of rectangular prism-like CaTiO3 (Supplementary Information: Electronic Supplementary Material ESI). Crystal Engineering Communication 15 (2013) 2359-2362.
  • 65. Fatimah I., Rahmadianti Y., Pudiasari R.A.: Photocatalyst of Perovskite CaTiO3 nanopowder synthesized from CaO derived from snail shell in comparison with the use of CaO and CaCO3. Proc. 12th JCC. IOP Conference Series: Materials Science and Engineering, Semarang, Indonesia, 2018, pp. 012026 1-7.
  • 66. McMillan P., Ross N.: The Raman spectra of several orthorhombic calcium oxide perovskites. Physical Chemistry in Minerals 16 (1988) 21-28.
  • 67. Li Y., Qin S., Seifert F.: Phase transitions in A-site substituted perovskite compounds: The (Ca1–2xNaxLax)TiO3 (0
  • 68. Mrharrab L., Ababou Y., Sayouri S., Mrharrab L., Ababou Y., Sayouri S., Elbasset A.: Elaboration et caractérisation des composés de structure pérovskite de formule Pb(X0.20Ti0.80)O3 (X=La, Mg, Mn, Ca, Cu, Bi et V). International Journal in Recent Advances In Multidisciplinary Research 10 (2015) 0801-0807.
  • 69. Pinatti I.M., Mazzo T.M., Gonçalves R.F., Varela O.A., Longo E., Rosa I.L.V.: CaTiO3 and Ca1-3xSmxTiO3: Photoluminescence and morphology as a result of hydrothermal microwave methodology. Ceramic International 42 (2016) 1352-1360.
  • 70. Balachandra U., Eror N.G.: Laser-induced Raman scattering in calcium titanate. Solid State Communications 44 (1982) 815-818.
  • 71. Moreira M.L., Paris E.C., Do Nascimento G.S., Longo V.M., Sambrano J.R., Mastelaro V.R., Bernardi M.I.B., Andrés J., Varela J.A., Longo E.: Structural and optical properties of CaTiO3 perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: an experimental and theoretical insight. Acta Materialia 57 (2009) 5174-5185.
  • 72. Dias A., Lage M.M., Khalam L.A., Sebastian M.T., Moreira R.L.: Vibrational spectroscopy of Ca2LnTaO6 (Ln=lanthanides, Y, and In) and Ca2InNBO6 double perovskites. Chemical Materials 23 (2011) 14-20.
  • 73. Dou Z., Wang G., Jiang J., Zhang F., Zhang T.: Understanding microwave dielectric properties of (1−x)CaTiO3–xLaAlO3 ceramics in terms of A/B-site ionic-parameters. Journal of Advanced Ceramics 6 (2017) 20-26.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8b8373f-1087-469b-86de-4938529c3c2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.