PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modified and unmodified zinc oxide as coagent in elastomer compounds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to study the activity of unmodifi ed and modifi ed ZnO in the peroxide crosslinking of hydrogenated acrylonitrile-butadiene elastomer (HNBR) and ethylene-propylene copolymer (EPM). In the fi rst step, zinc oxide was obtained by emulsion precipitation. Maleic acid was introduced onto the surface of ZnO Rusing an in situ method. The unmodified and modified zinc oxide was characterized using dispersive and morphological analysis, BET surface area analysis, and elemental, spectroscopic and thermal analysis. In the second stage of the research, the ZnO/MA systems were incorporated into the structure of elastomer compounds improving the kinetic and mechanical properties of vulcanizates. The proposed modification method had a favorable effect on the physicochemical properties of the zinc oxide and on the kinetic and mechanical properties of the vulcanizates. This study demonstrated that modification of zinc oxide by maleic acid is a promising technique.
Rocznik
Strony
63--68
Opis fizyczny
Bibliogr. 19 poz., tab., wykr., wz.
Twórcy
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
  • Technical University of Lodz, The Faculty of Chemistry, Institute of Polymer and Dye Technology, Stefanowskiego 12/16, PL-90924 Lodz, Poland
autor
  • Technical University of Lodz, The Faculty of Chemistry, Institute of Polymer and Dye Technology, Stefanowskiego 12/16, PL-90924 Lodz, Poland
Bibliografia
  • 1. Das, A., Wang, D.Y., Leuteritz, A., Subramaniam, K., Greenwell, H.C., Wagenknecht, U. & Heinrich, G. (2011). Preparation of zinc oxide free, transparent rubber nanocomposites using a layered double hydroxide fi ller. J. Mater. Chem. 21, 7194–7200. DOI: 10.1039/C0JM03784B.
  • 2. Chokanandsombat, Y. & Sirisinha, Ch. (2012). MgO and ZnO as reinforcing fillers in cured polychloroprene rubber. J. Appl. Polym. Sci. DOI: 10.1002/app.38579.
  • 3. Sabu, T. & Ranimol, S. (2010). Rubber nanocomposites – preparation, properties and applications. Wiley, Singapore.
  • 4. Stöckelhuber, K.W., Das, A., Jurk, R. & Heinrich, G. (2010). Contribution of physic-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber. Polymer 51, 1954–1963. DOI: 10.1016/j.polymer.2010.03.013.
  • 5. Mandal, U.K., Tripathy, D.K. & De, S.K. (2003). Effect of silica filler on dynamic mechanical properties of ionic elastomer based on carboxylated nitrile rubber. J. Appl. Polym. Sci. 55, 1185–1191. DOI: 10.1002/app.1995.070550805.
  • 6. Chapman, A.V. (1997). Safe rubber chemicals: reduction of zinc levels in rubber compounds. TAARC/MRRA.
  • 7. Yuan, Z., Zhou, W., Hu, T., Chen, Y., Li, F., Xu, Z. & Wang, X. (2011). Fabrication and properties of silicone rubber/ZnO nanocomposites via in situ surface hydrosilylation. Surf. Rev. Lett. 18, 33–38. DOI: 10.1142/S0218625X11014448.
  • 8. Mandal, U.K., Tripathy, D.K. & De, S.K. (1996). Dynamic mechanical spectroscopic studies on plasticization of an ionic elastomer based on carboxylated nitrile rubber by ammonia.Polymer 37, 5739–5742. DOI: 10.1016/S0032-3861(96)00545-9.
  • 9. Ibarra, L., Marcos-Fernandez, A. & Alzorriz, M. (2002). Mechanistic approach to the curing of carboxylated nitrile rubber (XNBR) by zinc peroxide/zinc oxide. Polymer 43, 1649–1655. DOI: 10.1016/S0032-3861(01)00734-0.
  • 10. Chatterjee, K. & Naskar, K. (2007). Development of thermoplastic elastomers based on maleated ethylene propylene rubber (n-EPM) and propylene (PP) by dynamic vulcanization. Express Polym. Lett. 1, 527–534. DOI: 10.3144/expresspolymlett.2007.75.
  • 11. Pradham, S., Costa, F.R., Wagenknecht, U., Jehnichen, D., Bhowmick, A.K. & Heinrich, G. (2008). Elastomer/LDH nanocomposites: synthesis and studies on nanoparticle dispersion, mechanical and interfacial adhesion. Eur. Polym. J. 44, 3122–3132. DOI 10.1016/j.eurpolymj.2008.07.025.
  • 12. Hamed, G.R. & Hua, K.C. (2004). Effect of zinc oxide particle size on the curing of carboxylated NBR and carboxylated SBR. Rubber Chem. Tech. 77, 214–226. DOI: 10.5254/1.3547818.
  • 13. Przybyszewska, M. & Zaborski, M. (2009). The effect of zinc oxide nanoparticle morphology on activity in crosslinking of carboxylated nitrile elastomer. Express Polym. Lett. 3, 542–552. DOI: 10.3144/expresspolymlett.2009.68.
  • 14. Fosmire, G.J. (1990). Zinc toxicity. Am. J. Clin. Nutr. 51, 225–227.
  • 15. Heideman, G., Datta, R.N., Noordermeer, J.W.M. & Van Baarle, B. (2005). Influence of zinc oxide during different sta ges of sulfur vulcanization. Elucidated by model compound studies. J. Appl. Polym. Sci. 95, 1388–1404. DOI: 10.1002/app.21364.
  • 16. Thomas, S.P., Mathew, E.J. & Marykutty, C.V. (2012). Synthesis and effect of surface modifi ed nano ZnO in natural rubber vulcanization. J. Appl. Polym. Sci. 124, 3099–3107. DOI: 10.1002/app.35349.
  • 17. Sabura Begum, P.M., Mohammed Yusuff, K.K. & Joseph, R. (2008). Preparation and use of nano zinc oxide in neoprene rubber. Int. J. Polym. Mater. 57, 1083–1094. DOI:10.1080/00914030802341646.
  • 18. Flory, P.J. & Rehner, J. (1943). Statistical mechanics of cross-linked polymer networks II. Swelling. J. Chem. Phys. 11, 521–526. DOI: 10.1063/1.1723792.
  • 19. Maciejewska, M. & Zaborski, M. (2010). Coagents of peroxide crosslinking of elastomer. Przem. Chem. 89, 472–477.
Uwagi
W wersji drukowanej oraz on-line czasopisma błędna numeracja bibliografii
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8b2f17d-110c-4896-b3c3-2c630d35c8f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.