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An example to illustrate several aspects of 
optimization theory in Managerial Economics

1.  Introduction

Optimization theory plays a significant role in Managerial Economics. Chap-
ter 8 of Peterson and Lewis (1999) provides a lucid exposition of linear program-
ming, followed by Mote and Madhavan (2016), where in chapters 5 and 22, there 
is a comprehensive and very informed treatment of the same topic and further 
discussions on integer programming and decision making under uncertainty. Nei-
ther of the two books discuss dynamic programming explicitly although simple 
integer programming problems can be solved easily by dynamic programming. 
Using dynamic programming for such integer programming leads to the repre-
sentation of the problem by decision trees which are discussed in chapter 16 of 
Mote and Madhavan (2016), in the context of decision analysis.

As in chapter 5 of Mote and Madhavan (2016), where a single example is 
used to discuss almost all aspects of linear programming, it would be good to 
have a single example that illustrates all aspects of linear, integer and dynamic 
programming, including such concepts such as value of perfect and imperfect 
information. That is precisely what we do here.

The purpose of this paper is similar to Shenoy (1998), which is a seminal 
contribution to decision analysis from a purely pedagogic point of view. If in 
game theory or in a game tree a player whose turn it is to make a move, does 
not know the move that was chosen by the former’s immediate predecessor, nor 
can the player whose turn it is to move identify its present position, then such 
a player is said to be located at an “information set”. Exactly the same dilemma 
is faced by a decision maker whose move is preceded or followed by “chance”. 
In either case, the pay-off of the player or the decision maker we are concerned 
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with depends on its move as well as the unknown move of the other player or 
chance. In Shenoy (1998), the name “information set” is incorporated into deci-
sion trees at such nodes where owing to a move by chance, the decision maker 
is unaware of its exact location. Shenoy (1998) goes on to provide a solution 
for such a game tree under probabilistic uncertainty (risk) applied to a problem 
related to drilling of oil. As is well known, the consequences of drilling in a “sus-
pected” oil field are uncertain.

Our example allows for the availability of “additional information” (as for 
instance a preliminary geological survey to update the existing information regard-
ing the availability of oil) at a price. All of the above and this embedded in a linear 
programming problem is to the best of our knowledge a novelty for a learner of 
decision analysis, if not for practitioners as well. 

2.  The mathematical background

Here we provide the general model in the context of which our discussion 
takes place.

Given positive integers m, n and M a subset of {1,…, n}, the standard form 
of the general problem we are concerned with is the following

Maximize 
j

n

j jc x
=
∑

1

s.t. 
j

n

ij ja x
=
∑

1

 ≤ bi, i = 1, …, m,

xj ≥ 0 for j = 1, ..., n, xj∈N∪{0} for j∈M, where N is the set of natural numbers.

If M = f, then the above is a linear programming (LP) problem, which from 
the perspective of managerial economics is covered extremely well in both Pe-
tersen and Lewis (1999) and Mote and Madhavan (2016). Technical details for 
such problems are available in Lahiri (2021).

If M = N, then we have an integer programming problem. If in addition we 
require some variable xj∈{0,1}, then we simply add the inequality xj ≤ 1 to the 
above system, unless it is already there.

Sometimes there may be probabilistic uncertainty about certain parameters 
of the above problem. In such a situation it may be possible to obtain informa-
tion about the uncertain parameters which leads to an improved value of the 
objective. The difference in the value of the objective function- after and prior to 
the availability of information- is called the value of information. This value may 
depend on whether the information about the uncertain parameters is perfect 
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or imperfect. The important thing to note about information is that it should be 
available when required.

The example in the next section gives us a peep into the issues discussed 
above. 

3.  Numerical example

The following numerical example can be used for instructional purposes to 
explain the issues mentioned above. 

Maximize x1 + r(x3)x2 -  
3
4 x3 where Pr.{r(x3) =  

3
2 | x3 = 1} =  

7
8 , Pr.{r(x3) = 

=   
1
2  | x3 = 1} =  

1
8 , Pr.{r(x3) =  

3
2 | x3 = 0} = 

1
8 , Pr.{r(x3) =   

1
2  | x3 = 0} =  

7
8 . 

To be precise r(0) and r(1) are two independent random variables. 
If in addition we require x1 and x2 to be non-negative integers, then we have 

an integer programming problem and such simple integer programming problems 
can be solved using decision trees, i.e. dynamic programming.

One can also discuss value of perfect and imperfect information, so that if 
the person providing information is known to be correct with probability p(x3), 
then r(x3) is the predicted value with probability p(x3) and the other value with 
probability 1-p(x3 ). We could generalize this further by letting r(x3) denote the 
predicted value of the co-efficient of x2 for a given value of x3 and considering 
p(r(x3) = r(x3)| r(x3) = a) = Probability of the event [r(x3) = r(x3)] conditional 
on the event [r(x3) = a] and 1- p(r(x3) = r(x3)| r(x3) = a) = Probability of the 

event [r(x3)∈{  
1
2  ,  

3
2 }\{r(x3)}] conditional on the event [r(x3) = a], for a∈{  

1
2  ,  

3
2 }. 

However, that would just be complicating the calculations and is left as an exer-
cise for the interested reader.

In any case we would require to obtain Pr.[r(x3) = a] = Probability of the event 
[r(x3) = a], which can be done using Baye’s rule (please see Appendix for details).

In our case, Pr.[r(x3) = a] = 
Probability of the event r x p

p
3 3

3

1

2 1

( ) =  − − ( )( )
( ) −

a x

x
.

Hence Pr.[r(0) = 
1
2] = 

7
8

1 0

2 0 1

0 1
8

2 0 1

− − ( )( )
( ) −

=
( ) −

( ) −

p

p

p

p
, Pr.[r(0) = 

3
2 ] = 

1
8

1 0

2 0 1

0 7
8

2 0 1

− − ( )( )
( ) −

=
( ) −

( ) −

p

p

p

p , 

Pr.[r(1) = 
1
2 ] = 

1
8

1 1

2 1 1

1 7
8

2 1 1

− − ( )( )
( ) −

=
( ) −

( ) −

p

p

p

p , Pr.[r(1) = 
3
2 ] = 

7
8

1 1

2 1 1

1 1
8

2 1 1

− − ( )( )
( ) −

=
( ) −

( ) −

p

p

p

p .

In order to determine the value of x3 it is necessary for the DM to have infor-
mation about r(0) and r(1) right at the beginning of the decision making process. 
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4.  Solution of the numerical example for  
an LP and the value of perfect information

In the absence of any information we compare the value of the optimal 
solutions for x3 = 0 and x3 = 1 using r(0) =  

3
2  with probability  

1
8 , r(0) =   

1
2   with 

probability  
7
8  and r(1) =  

3
2  with probability  

7
8 , r(1) =   

1
2   with probability  

1
8  and =  

11
 8   

and choose the solution which gives the higher optimal value.
Hence we solve 

Maximize x1 +  
3
2  x2 

s.t. 2x1 + x2 ≤ 4
x1 + 2x2 ≤ 4,
x1 ≥ 0, x2 ≥ 0,

and 

Maximize x1 +  
1
2  x2

s.t. 2x1 + x2 ≤ 4
x1 + 2x2 ≤ 4,
x1 ≥ 0, x2 ≥ 0.

Without any integer constraints, we know from LP theory that if an optimal 
solution exists then there must be one at one of the four corner points {(0,0), (0,2), 
(2,0), ( 

4
3 , 

4
3 )}. Since the set of values of the objective function for both problems 

corresponding to the set of feasible points is bounded above, it is known (a proof 
is available in Lahiri (2020) that optimal solutions exist for both problems.

The optimal solution for the first LP problem i.e. the one with co-efficient of 
x2 being  

3
2  is ( 

4
3 , 

4
3 ) with optimal value being 

10
 3  .

The set of optimal solution for the first LP problem i.e. the one with co-efficient 
of x2 being   

1
2   is the closed interval joining the end points ( 

4
3 , 

4
3 ) and (2,0), with 

optimal value being 2.

Hence the expected optimal value after choosing x3 = 0 is  
7
8 ×  

1
2   +  

1
8 × 

3
2  =

10
16

5
8

=  

and the optimal value after choosing x3 = 0 is  
7
8 × 

3
2  +  

1
8 ×  

1
2   -  

3
4  = 22

16
12
16

10
16

5
8

− = = .
Hence the DM is indifferent between choosing x3 = 0 and x3 = 1, and having 

chosen x3 waits for the realized value of r(x3) to decide what the optimal values 
of x1 and x2 should be.

The expected optimal value without any information is   
5
8 .

If perfect information is available, then there are four possibilities for the 
pairs of predicted values of r: (r(0),r(1)) = ( 

3
2 , 

3
2 ), (r(0),r(1)) = (  

1
2  ,  

1
2  ), (r(0),r(1)) 

= ( 
3
2 ,  

1
2  ) and (r(0),r(1)) = (  

1
2 , 

3
2 ).
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From the above calculations we know that the optimal value pairs corre-
sponding to (r(0), r(1)) =

(a) ( 
3
2 , 

3
2 ) is ( 

10
 3 , 

10
 3  - 

3
4 ) with  the optimal solution in both situations being 

(x1, x2) = ( 
4
3 , 

4
3 );

(b) ( 
3
2 ,  

1
2  ) is ( 

10
 3 , 2 - 

3
4 ) = (

10
 3 ,  

5
4 ) with the optimal solution for x3 = 0 being  

(x1, x2) = ( 
4
3 , 

4
3 ) and the set of optimal solutions for x3 = 1 being ordered pairs 

(x1, x2) in the closed interval joining the end points ( 
4
3 , 

4
3 ) and (2,0);

(c) (  
1
2  , 

3
2 ) = (2, 

10
 3  -  

3
4 ) = (2,  

91
12 ) with the set of optimal solutions for x3 = 0 

being ordered pairs (x1,x2) in the closed interval joining the end points ( 
4
3 , 

4
3 ) 

and (2,0) and the optimal value for x3 = 1 being (x1, x2) = ( 
4
3 , 

4
3 ); 

(d) (  
1
2  ,  

1
2  ) is (2, 2 -  

3
4 ) = (2, 

5
4  ) with the set of optimal solution for both x3 

= 0 and x3 = 1 being ordered pairs (x1, x2) in the closed interval joining the end 
points ( 

4
3 , 

4
3 ) and (2, 0). 

If the predicted value of r(0) =  
3
2 , then the optimal choice is ( 

4
3 , 

4
3 , 0) with 

an optimal value of 3  
1
3  . The probability of such a prediction is  

1
8 . 

If the prediction is (r(0),r(1)) = (  
1
2  ,  

1
2  ), then the optimal choice is any point 

in the closed interval with end points ( 
4
3 , 

4
3 , 0) and (2, 0, 0) with an optimal value 

of 2. The probability of such a prediction is   
7

64 .
If the prediction is (r(0),r(1)) = (  

1
2  , 

3
2 ), then the optimal choice is ( 

4
3 , 

4
3 , 1) 

with an optimal value of 2  
17
12  . The probability of such a prediction is   

49
64 . 

Hence with perfect information, the optimal expected value of the objective 
function is 3 

1
3 ×  

1
8 + 2 × 2 7

64
2 7

12
49
64

2 673
2304

× + × = + 22 7
64

2 7
12

49
64

2 673
2304

× + × = × 2 7
64

2 7
12

49
64

2 673
2304

× + × = = 2 2 7
64

2 7
12

49
64

2 673
2304

× + × = .
The optimal value of the objective function without any information is   

5
8  

and the optimal value of the objective function with perfect information is 22 7
64

2 7
12

49
64

2 673
2304

× + × = .
Hence the value of perfect information is 22 7

64
2 7

12
49
64

2 673
2304

× + × =  -   
5
8  is 2 - 2 17

144
1 673

1440
0− = > = 12 17

144
1 673

1440
0− = > > 0.

5.  LP and the value of imperfect information

Suppose for x3∈{0, 1}, there is a probability p(x3)∈[0,1] such that the pre-
dicted value of r(x3) is correct. Recall that r(x3) denotes the predicted value and 
r(x3) denotes the realized value for x3∈{0, 1}. Thus, p(x3) is the probability of 
the event {r(x3) = r(x3)}. In the previous section we were assuming p(x3) = 1 for 
x3∈{0,1}. In this section, we relax this assumption. Thus, for x3∈{0,1}, r(x3) = r(x3)  
with probability p(x3) and r(x3)∈{  

1
2  ,  

3
2 }\{r(x3)}, with probability 1 - p(x3).

If r(0) =   
1
2  , then with probability p(0), r(0) =   

1
2   with the optimal value of 

the corresponding problem being 2 and with probability 1 - p(0), r(x3) =  
3
2  with 



28

Somdeb Lahiri

the optimal value of the corresponding problem being 3 
1
3 . Hence if r(0) =   

1
2  , 

the expected optimal value of the DM is 2p(0) + 3 
1
3 (1 - p(0)) = 3 

1
3  - 1 

1
3  p(0).

Similarly if r(0) =  
3
2 , the expected optimal value of the DM is 3 

1
3 p(0) +  

+ 2(1 - p(0)) = 2 + 1 
1
3  p(0).

If r(1) =   
1
2  , then the expected optimal value of the DM is 2p(1) + 3 

1
3 (1 - p(1)) 

-  
3
4  = 3 

1
3  - 1 

1
3  p(1) -  

3
4  = 2  

5
9  - 1 

1
3  p(1).

If r(1) =  
3
2 , the expected optimal value of the DM is 3 

1
3 p(1) + 2(1 - p(1)) 

-  
3
4  =  = 2 -  

3
4  + 1 

1
3  p(1) = 1 

1
4  + 1 

1
3  p(1).

As before there are four possibilities for the pairs of predicted values of r: (r(0), 

r(1)) = ( 
3
2 , 

3
2 ), (r(0), r(1)) = (  

1
2  ,   

1
2  ), (r(0), r(1)) = ( 

3
2 ,   

1
2  ) and (r(0), r(1)) = (  

1
2  , 

3
2 ).

If (r(0), r(1)) = ( 
3
2 , 

3
2 ), then the DM will choose x3 = 0 or 1, depending upon 

whether 2 + 1 
1
3  p(0) is greater than or equal to 1 

1
4  + 1 

1
3  p(1) or the other way 

around. Hence the DM’s expected optimal value is max{2 + 1 
1
3  p(0), 1 

1
4  + 1 

1
3  p(1)}. 

The probability of the prediction being (r(0),r(1)) = ( 
3
2 , 

3
2 ) is 

p

p

p

p

0 7
8

2 0 1

1 1
8

2 1 1

( ) −

( ) −















( ) −

( ) −













 .

If (r(0), r(1)) = (  
1
2  ,  

1
2  ) the DM’s expected optimal value is max{3 

1
3  - 1 

1
3  p(0), 

2  
5
9  - 1 

1
3  p(1)}. The probability of the prediction being (r(0), r(1)) = (  

1
2  ,   

1
2  ) is 

p

p

p

p

0 1
8

2 0 1

1 7
8

2 1 1

( ) −

( ) −















( ) −

( ) −













 .

If (r(0), r(1)) = ( 
3
2 ,  

1
2  ) the DM’s expected optimal value is max{2 + 1 

1
3  p(0), 

2  
5
9  - 1 

1
3  p(1)}. The probability of the prediction being (r(0), r(1)) = ( 

3
2 ,  

1
2  ) is  

p

p

p

p

0 7
8

2 0 1

1 7
8

2 1 1

( ) −

( ) −















( ) −

( ) −













 . 

If (r(0), r(1)) = (  
1
2  , 

3
2 ) the DM’s expected optimal value is max{3 

1
3  - 1 

1
3  

p(0), 1 
1
4 + 1 

1
3  p(1)}. The probability of the prediction being (r(0), r(1)) = (  

1
2  , 

3
2 )  

is 
p

p

p

p

0 1
8

2 0 1

1 1
8

2 1 1

( ) −

( ) −















( ) −

( ) −













 .

Hence with imperfect information, the optimal expected value of the objective 

function is [
p

p

p

p

0 7
8

2 0 1

1 1
8

2 1 1

( ) −

( ) −















( ) −

( ) −













 ][max{2 + 1 

1
3  p(0), 1 

1
4  + 1 

1
3  p(1)}] + [

p

p

p

p

0 1
8

2 0 1

1 7
8

2 1 1

( ) −

( ) −















( ) −

( ) −













 ] 

[max{3 
1
3  - 1

1
3  p(0), 2  

5
9  - 1

1
3  p(1)}] + [

p

p

p

p

0 7
8

2 0 1

1 7
8

2 1 1

( ) −

( ) −















( ) −

( ) −













 ][max{2 + 1

1
3  p(0),  

2  
5
9  - 1 

1
3  p(1)}] + 

p

p

p

p
max

0 1
8

2 0 1

1 1
8

2 1 1
3 1

3

( ) −

( ) −















( ) −

( ) −



























 −− ( ) + ( ){ }





1 1
3

0 1 1
4

1 1
3

1p p, .
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Without any information the optimal expected value of the objective func-
tion is   

5
8 .

The value of imperfect information is the difference between the optimal 
expected value of the objective function with imperfect information and   

5
8 .

If it is positive, then the value of imperfect information is the maximum the 
DM is willing to pay for obtaining imperfect information.

If p(0) = p(1) = 1, then the above sum reduces to    
7

64 [3
1
3 + 2] +    

1
64 × 31

3  +   
49
64 × 

× 2   
7

12  =    
7

64 × 51
3  +   

1
64  × 31

3 +   49
64 × 2   

7
12  = 22 7

64
2 7

12
49
64

2 673
2304

× + × = .

If p(0) and p(1) are sufficiently close to 1, then the value of imperfect infor-
mation is likely to be positive.

6.  The integer programming version of  
the above problem

The integer programming version of the above problem is the following

Maximize x1 + r(x3)x2 -  
3
4 x3

s.t. 2x1 + x2 ≤ 4
x1 + 2x2 ≤ 4
x3 ≤ 1,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,
where Pr.{r(x3) =   

3
2 | x3 = 1} =  

7
8 , Pr.{r(x3) =   

1
2  | x3 = 1} =   

1
8  ,  

Pr.{r(x3) =   
3
2 | x3 = 0} =   

1
8  , Pr.{r(x3) =   

1
2  | x3 = 0} =  

7
8 . 

Once again, r(0) and r(1) are two independent random variables.
The analysis differs from the above only in the computational strategies of 

the following two integer linear programming problems:

Maximize x1 +  
3
2  x2 

s.t. 2x1 + x2 ≤ 4
x1 + 2x2 ≤ 4
x1, x2∈N∪{0},

and

Maximize x1 +   
1
2   x2 

s.t. 2x1 + x2 ≤ 4
x1 + 2x2 ≤ 4
x1, x2∈N∪{0}.
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In this situation it is easy to observe that for both problems the set of feasible 
solutions is {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)}.

The optimal solution for the first problem is at (0, 2) with the optimal value 
being 3 and the optimal solution for the second problem is at (2, 0) with the op-
timal value being 2. However, the interesting point to note is that solving the 
original problem using a decision tree can be quite instructive about several 
aspects of managerial decision analysis.

At the root of the tree, which is a node, the DM chooses an action/move i.e. 
an edge of the tree, from the two edges x3 = 0, x3 = 1. A note where the DM, has 
a move, called a decision node, is usually denoted by a square.

At the next pair of nodes, regardless of what the choice at the root of the 
tree, it is the turn for chance to make a move. A note where chance has a move, 
called a chance node, is usually denoted by a circle.

If x3 = 0, then chance chooses the edge [r(0) =   
1
2  ] with probability  

7
8  and 

[r(0) =  
3
2 ] with probability  

1
8 . Let the resulting nodes be denoted IP1(0) and IP2(0). 

These are decision nodes with the states variables (b1, b2) = (4, 4) and value  
V2 = 0 inscribed within it. From this node the DM, is required to choose one of 
three possible edges corresponding to the three values of x2: x2 = 0, x2 = 1, x2 = 2. 

If x3 = 1, then chance chooses the edge [r(1) =   
1
2  ] with probability  

1
8  and  

[r(1) =  
3
2 ] with probability  

7
8 . Let the resulting nodes be denoted IP1(1) and IP2(0). 

These are decision nodes with the state variables (b1, b2) = (4, 4) and value  

V2 = -  
3
4  inscribed within it. From this node the DM, is required to choose one of 

three possible edges corresponding to the three values of x2: x2 = 0, x2 = 1, x2 = 2.
If x3 = 0, then for the chosen values of r(0) and x2 we arrive at a decision 

node with the state variable (b1, b2) = (4 - x2, 4 - 2x2) and value V1 = r(0)x2 in-
scribed within it.

If x3 = 1, then for the chosen values of r(1) and x2 we arrive at a decision 
node with the state variable (b1, b2) = (4 - x2, 4 - 2x2) and value V1 = -   

3
4   + r(1)

x2 inscribed within it.
At the decision node with (b1, b2) = (4 - x2, 4 - 2x2) and value V1 = r(0)x2 

inscribed within it, the possible values of x1 are all non-negative integers less 

than or equal to min{
4

2
2− x

, 4 - 2x2}, with an edge corresponding to each such 

non-negative integer. At the end of such an edge is a terminal node of the tree 
with V0 = V1 + the value of x1 along the chosen edge = r(0)x2 + the value of x1 
along the chosen edge. 

At the decision node with (b1, b2) = (4 - x2, 4 - 2x2) and value V1 = -  
3
4  + r(1)x2  

inscribed within it, the possible values of x1 are all non-negative integers less 
than or equal to min{

4
2

2− x
, 4 - 2x2}, with an edge corresponding to each such 
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non-negative integer. At the end of such an edge is a terminal node of the tree 

with V0 = V1 + the value of x1 along the chosen edge = -  
3
4 + r(1)x2 + the value of 

x1 along the chosen edge.
Since the optimization problem is a maximization problem with the co-efficient 

of x1 being positive at all decision nodes at the last stage of the decision tree the 
chosen value of x1 will be min{

4
2

2− x
, 4 - 2x2}.

Thus if x3 = 0, then for the value of r(0) chosen by chance the chosen value 
of x2 must be a maximizer of r(0)x2 + min{

4
2

2− x
, 4 - 2x2} which is max{  

1
2  x2 +  

+ min{
4

2
2− x

, 4 - 2x2}|x2∈{0, 1, 2}} with probability 
7
8  and max{ 

3
2 x2 + min{

4
2

2− x
, 

4 - 2x2}|x2∈{0, 1, 2}} with probability  
1
8 .

Thus, the optimal expected value resulting from choosing x3 = 0 is  
7
8  ×[max{  

1
2  x2 + min{

4
2

2− x
, 4 - 2x2}|x2∈{0, 1, 2}}] +  

1
8 × [max{  

3
2  x2 + min{

4
2

2− x
, 

4 - 2x2}|x2∈{0,1,2}}]. Let us call this EV(x3 = 0).
Similarly if x3 = 1, then for the value of r(1) chosen by chance the chosen 

value of x2 must be a maximizer of -  
3
4  + r(1)x2 + min{

4
2

2− x
, 4 - 2x2} which is  

max{- 
3
4 +  

1
2  x2 + min{

4
2

2− x
, 4 - 2x2}|x2∈{0,1,2}} with probability  

1
8  and  

max{- 
3
4 +  

3
2  x2 + min{

4
2

2− x
, 4 - 2x2}|x2∈{0,1,2}} with probability  

7
8 .

Thus, the optimal expected value resulting from choosing x3 = 1 is  
7
8  ×[max{- 

3
4  +   

1
2  x2 + min{

4
2

2− x
, 4 - 2x2}|x2∈{0, 1, 2}}] +  

1
8 × [max{

1
2 x2 +  

+ min{
4

2
2− x

, 4 - 2x2}| x2∈{0, 1, 2}}]. Let us call this EV(x3 = 1).
An optimal solution for x3 is equal to 0 if and only if EV(x3 = 0) ≥ EV(x3 = 1). 

Otherwise, the optimal value of x3 is equal to 1.

In our problem EV(x3 = 0) =  
7
8  × 2 +  

1
8 × 4 = 

18
 8  = 2 

1
4 and EV(x3 = 1) =  

7
8  × 3 + 

+  
1
8 × 2 - 

3
4 = 

17
 8   = 2 

1
8 .

Thus EV(x3 = 0) > EV(x3 = 1) and hence the optimal choice is x3 = 0.
Contrast this result with the one we obtained for LP without any information.
The result for the cases with perfect and imperfect information for an IP are 

obtained in an analogous manner for that of an LP.
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Appendix

r and r are two random variables defined on a set A consisting of two ele-
ments a generic element of which is denoted by a. 

Probability [r = a] and Probability [r = a| r = b] = p(r = a| r = b) known for 
all a, b	∈ A. We need to find Probability [r = a] for all a	∈ A.

p(r = a|r = a) × Pr.[r = a] = Probability of the event [r = a	& r = a)].
p(r = a|r	∈ A\{ a}) × Pr.[r	∈ A \{a}] = Probability of the event [r = a	& A\{a}].
Adding the two equations we get p(r = a|r = a) × Pr.[r = a] + p(r = a|r	∈ A\{ a}) 

(1 - Pr.[r = a]) = Probability of the event [r = a].

Thus, Pr.[r = a] =

 
Probability of the event r p r

p r p r

=[ ] − = ∈ { }( )
= =( ) − =

a a r a

a r a a r

| \

| |

A

∈∈ { }( ) =
= ∈ { }( ) − =[ ]

= ∈A

p r Probability of the event r

p r\

| \

|a

a r a a

a r

A

AA p r\ |a a r a{ }( ) − = =( )

 

Probability of the event r p r

p r p r

=[ ] − = ∈ { }( )
= =( ) − =

a a r a

a r a a r

| \

| |

A

∈∈ { }( ) =
= ∈ { }( ) − =[ ]

= ∈A

p r Probability of the event r

p r\

| \

|a

a r a a

a r

A

AA p r\ |a a r a{ }( ) − = =( )
Note: If  Probability of the event [r = a] > p(r = a|r = a), then if  

1 > Pr.[r = a] > 0, Pr.[r = a] × Probability of the event [r = a] > Pr.[r = a] ×  
× p(r = a|r = a). 
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Since Probability of the event [r = a] = Pr.[r = a] × Probability of the event  
[r = a] + (1 - Pr.[r = a]) × Probability of the event [r = a], it must be the case that  
(1 - Pr. [r = a]) × Probability of the event [r = a] < p(r = a|r	∈ A\{ a}) × (1 - Pr.[r = a]),  
and hence Probability of the event [r = a] < p(r = a|r	∈ A\{ a}).

The converse is also true, as can be checked from the calculations above.

Summary

We provide a single example that illustrates all aspects of linear, integer and dynamic program-
ming, including such concepts such as value of perfect and imperfect information. Such problems, 
though extremely plausible and realistic are hardly ever discussed in managerial economics.
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