Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present study proposes a new fuzzy finite element method for dynamic multibody interaction with consideration for structural damage. Here, fuzzy parameters are equivalently transformed into stochastic parameters using information entropy, and the fuzzy response of the structure is obtained by fuzzy calculation combined with the new point estimation method. Numerical examples are used to illustrate the accuracy and efficiency of the presented methods, and scanning method simulations are implemented to validate the computational results. Considering that the damage degree of the pier is uncertain, namely fuzzy uncertainty, stiffness reduction is used to simulate the damage of the pier. The fuzzy dynamic response of the train–bridge system is investigated when the pier structure and the mass of the train are fuzzy parameters. The response of the train–bridge interaction considering damage far exceeds that obtained from conventional deterministic parameter calculations. To ensure running safety, studying the response of the vehicle-system coupled vibration with fuzzy parameters is of great significance.
Czasopismo
Rocznik
Tom
Strony
art. no. e197, 2024
Opis fizyczny
Bibliogr. 44 poz., tab., wykr.
Twórcy
autor
- School of Civil Engineering, Central South University, Changsha, China
- School of Civil Engineering, Taishan University, Taian 271000, Shandong, China
autor
- School of Civil Engineering, Central South University, Changsha, China
autor
- School of Civil Engineering, Central South University, Changsha, China
autor
- School of Civil Engineering, Central South University, Changsha, China
autor
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, UK
autor
- School of Civil Engineering, Central South University, Changsha, China
- School of Civil Engineering, Taishan University, Taian 271000, Shandong, China
Bibliografia
- 1. Zhao H, Wei B, Shao Z, Xie X, Jiang L, Xiang P. Assessment of train running safety on railway bridges based on velocity-related indices under random near-fault ground motions. Structures. 2023;57:105244. https://doi.org/10.1016/j.istruc.2023.105244.
- 2. Zhao H, Wei B, Shao Z, Xie X, Zhang P, Hu H, Zeng Y, Jiang L, Li C, Xiang P. The impact of dissipative algorithms on assessment of high-speed train running safety on railway bridges. Eng Struct. 2024;314:118298. https:// doi. org/ 10. 1016/j. engst ruct.2024.118298.
- 3. Zhao H, Wei B, Jiang LZ, Xiang P. Seismic running safety assessment for stochastic vibration of train–bridge coupled system. Archiv Civ Mech Eng. 2022. https:// doi. org/ 10. 1007/s43452-022-00451-3.
- 4. Zeng YY, Jiang LZ, Zhang ZX, Zhao H, Hu HF, Zhang P, Tang F, Xiang P. Influence of variable height of piers on the dynamic characteristics of high-speed train-track-bridge coupled systems in mountainous areas. Appl Sci Basel. 2023. https://doi.org/10.3390/app131810271.
- 5. Chang TP, Lin GL, Chang E. Vibration analysis of a beam with an internal hinge subjected to a random moving oscillator. Int J Solids Struct. 2006;43(21):6398–412. https://doi.org/10.1016/j.ijsolstr.2005.10.013.
- 6. Zhao H, Gao L, Wei B, Tan J, Guo P, Jiang L, Xiang P. Seismic safety assessment with non-Gaussian random processes for train-bridge coupled systems. Earthq Eng Eng Vib. 2024;23(1):241–60.https://doi.org/10.1007/s11803-024-2235-y.
- 7. Zhao H, Wei B, Jiang L, Xiang P, Zhang X, Ma H, Xu S, Wang L, Wu H, Xie X. A velocity-related running safety assessment index in seismic design for railway bridge. Mech Syst Signal Pr. 2023;198:110305. https://doi.org/10.1016/j.ymssp.2023.110305.
- 8. Xiang P, Zhang P, Zhao H, Shao ZJ, Jiang LZ. Seismic response prediction of a train–bridge coupled system based on a LSTM neural network. Mech Based Des Struct Mach. 2023. https://doi.org/10.1080/15397734.2023.2260469.
- 9. Contreras H. The stochastic finite-element method. Comput Struct. 1980;12(3):341–8. https://doi.org/10.1016/0045-7949(80)90031-0.
- 10. Wu SQ, Law SS. Dynamic analysis of bridge–vehicle system with uncertainties based on the finite element model. Probab Eng Mech. 2010;25(4):425–32. https://doi.org/10.1016/j.probengmech.2010.05.004.
- 11. Zhao Y-G, Ono T. New point estimates for probability moments. J Eng Mech. 2000;126(4):433–6. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:4(433).
- 12. Mao J, Yu Z, Xiao Y, Jin C, Bai Y. Random dynamic analysis of atrain–bridge coupled system involving random system parameters based on probability density evolution method. Probab Eng Mech. 2016;46:48–61. https://doi.org/10.1016/j.probengmech.2016.08.003.
- 13. Pham HA, Truong VH, Vu TC. Fuzzy finite element analysis for free vibration response of functionally graded semi-rigid frame structures. Appl Math Model. 2020;88:852–69. https://doi.org/10.1016/j.apm.2020.07.014.
- 14. Zadeh LA. Fuzzy sets. Inf Control. 1965;8(3):338–53. https://doi.org/10.1016/S0019-9958(65)90241-X.
- 15. Moens D, Hanss M. Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: recent advances. Finite Elements Anal Des. 2011;47(1):4–16. https://doi.org/10.1016/j.finel.2010.07.010.
- 16. Shu-Xiang G, Zhen-Zhou L, Li-Fu F. Fuzzy arithmetic and solving of the static governing equations of fuzzy finite element method. Appl Math Mech. 2002;23(9):1054–61. https://doi.org/10.1007/BF02437716.
- 17. Wang Z, Tian Q, Hu H. Dynamics of spatial rigid–flexible multi-body systems with uncertain interval parameters. Nonlinear Dyn.2016;84(2):527–48. https://doi.org/10.1007/s11071-015-2504-4.
- 18. Rao SS, Cao L. Fuzzy boundary element method for the analysis of imprecisely defined systems. AIAA J. 2001;39(9):1788–97.https://doi.org/10.2514/2.1510.
- 19. Massa F, Tison T, Lallemand B. A fuzzy procedure for the static design of imprecise structures. Comput Methods Appl Mech Eng. 2006;195(9):925–41. https://doi.org/10.1016/j.cma.2005.02.015.
- 20. Yang LF, Li QS, Leung AYT, Zhao YL, Li GQ. Fuzzy variational principle and its applications. Eur J Mech A/Solids.2002;21(6):999–1018. https://doi.org/10.1016/S0997-7538(02)01254-8.
- 21. Wasfy TM, Noor AK. Finite element analysis of flexible multi-body systems with fuzzy parameters. Comput Methods Appl Mech Eng. 1998;160(3):223–43. https://doi.org/10.1016/S0045-7825(97)00297-1.
- 22. Möller B, Graf W, Beer M. Fuzzy structural analysis using α-level optimization. Comput Mech. 2000;26(6):547–65. https://doi.org/10.1007/s004660000204.
- 23. Pham H-A, Truong V-H. A robust method for load-carrying capacity assessment of semirigid steel frames considering fuzzy parameters. Appl Soft Comput. 2022;124:109095. https://doi.org/10.1016/j.asoc.2022.109095.
- 24. Pham HA, Nguyen BD. Fuzzy structural analysis using improved jaya-based optimization approach. Period Polytech Civ Eng.2024;68(1):1–7. https://doi.org/10.3311/PPci.22818.
- 25. Tuan NH, Huynh LX, Anh PH. A fuzzy finite element algorithm based on response surface method for free vibration analysis of structure. Vietnam J Mech. 2015;37(1):17–27. https://doi.org/10.15625/0866-7136/37/1/3923.
- 26. Akpan UO, Koko TS, Orisamolu IR, Gallant BK. Practical fuzzy finite element analysis of structures. Finite Elements Anal Des.2001;38(2):93–111. https:// doi. org/ 10. 1016/ S0168- 874X(01)00052-X.
- 27. Cherki A, Plessis G, Lallemand B, Tison T, Level P. Fuzzy behavior of mechanical systems with uncertain boundary conditions. Comput Methods Appl Mech Eng. 2000;189(3):863–73. https://doi.org/10.1016/S0045-7825(99)00401-6.
- 28. Zhenyu L, Qiu C. A new approach to fuzzy finite element analysis. Comput Methods Appl Mech Eng. 2002;191(45):5113–8. https://doi.org/10.1016/S0045-7825(02)00240-2.
- 29. Zhang XB, Xie XA, Tang SH, Zhao H, Shi XJ, Wang L, Wu H, Xiang P. High-speed railway seismic response prediction using CNN-LSTM hybrid neural network. J Civ Struct Health Monit. 2024. https://doi.org/10.1007/s13349-023-00758-6.
- 30. Zhao H, Wei B, Zhang P, Guo P, Shao Z, Xu S, Jiang L, Hu H, Zeng Y, Xiang P. Safety analysis of high-speed trains on Bridges under earthquakes using a LSTM-RNN-based surrogate model. Comput Struct. 2024;294:107274. https:// doi. org/ 10. 1016/j.compstruc.2024.107274.
- 31. Zhang XB, Xie XA, Wang L, Luo GC, Cui HT, Wu H, Liu XC, Yang DL, Wang HP, Xiang P. Experimental study on crts iii ballastless track based on quasi-distributed fiber bragg grating monitoring. Iran J Sci Technol Trans Civ Eng. 2024. https://doi.org/10.1007/s40996-023-01319-z.
- 32. Zhang XB, Zheng ZZ, Wang L, Cui HT, Xie XA, Wu H, Liu XC, Gao BW, Wang HP, Xiang P. A quasi-distributed optic fiber sensing approach for interlayer performance analysis of ballast-less Track-Type II plate. Optics Laser Technol. 2024. https://doi.org/10.1016/j.optlastec.2023.110237.
- 33. Zhang P, Zhao H, Shao Z, Jiang L, Hu H, Zeng Y, Xiang P. Arapid analysis framework for seismic response prediction and running safety assessment of train–bridge coupled systems. Soil Dyn Earthq Eng. 2024;177:108386. https://doi.org/10.1016/j.soildyn.2023.108386.
- 34. Xiang P, Guo PD, Zhou WB, Liu X, Jiang LZ, Yu ZW, Yu J.Three-dimensional stochastic train-bridge coupling dynamics under after shocks. Int J Civ Eng. 2023;21(10):1643–59. https://doi.org/10.1007/s40999-023-00846-0.
- 35. Shannon CE. A mathematical theory of communication. Bell System Techn J. 1948;27(3):379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
- 36. Kam TY, Brown Colin B. Subjective modification of aging stochastic systems. J Eng Mech. 1984;110(5):743–51. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:5(743).
- 37. De Luca A, Termini S. Entropy of L-fuzzy sets. Inf Control. 1974;24(1):55–73. https:// doi. org/ 10. 1016/ S0019- 9958(74)80023-9.
- 38. Haldar A, Reddy RK. A random-fuzzy analysis of existing structures. Fuzzy Sets and System. 1992;48(2):201–10. https://doi.org/10.1016/0165-0114(92)90334-Z.
- 39. Zhao YG, Ono T. New point estimates for probability moments. JEng Mech. 2000;126(4):433–6. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:4(433).
- 40. Lv Z, Chen C, Li W. Normal distribution fuzzy sets. In: Cao Bing-Yuan, editor. Fuzzy information and engineering. Springer: Berlin, Heidelberg; 2007.
- 41. Moore RE. Introduction to interval computations (Götz Alefeldand Jürgen Herzberger). SIAM Rev. 1985;27(2):296–7. https://doi.org/10.1137/1027096.
- 42. Xiang P, Xu S, Zhao H, Jiang L, Ma H, Liu X. Running safety analysis of a train–bridge coupled system under near-fault ground motions considering rupture directivity effects. Structures. 2023;58:105382. https://doi.org/10.1016/j.istruc.2023.105382.
- 43. Li Q, Qiu Z, Zhang X. Eigen value analysis of structures with interval parameters using the second-order Taylor series expansion and the DCA for QB. Appl Math Model. 2017;49:680–90.https://doi.org/10.1016/j.apm.2017.02.041.
- 44. Zhou YT, Jiang C, Han X. Interval and subinterval analysis methods of the structural analysis and their error estimations. Int J Comput Methods. 2006;03(02):229–44. https://doi.org/10.1142/S0219876206000771.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8a7b084-4236-41d9-a794-f77af1653e38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.