Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Języki publikacji
Abstrakty
The continued development of microprocessor-based knee prostheses has improved the independence of people with a femoral amputation in many environments. This study aimed to describe the effect of slopes on kinematic joint variables and segmental asymmetry.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
147--157
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
- University Hospital for Rehabilitation of Le Grau du Roi, University Hospital Center of Nimes, University of 8 Medicine Montpellier/Nimes, French Federation of Disabled Sports, France
autor
- Fondation Garches, France
autor
- UMR1179 Endicap, INSER-UVSQ, France
- Pôle Parasport – ISPC, CHU Raymond Poincaré – APHP, France
Bibliografia
- 1. Baker, Richard, Alberto Esquenazi, Maria G. Benedetti, et Kaat Desloovere. « Gait Analysis: Clinical Facts ». European Journal of Physical and Rehabilitation Medicine 52, no 4 (août 2016): 560 74.
- 2. Bellmann M, Köhler TM, Schmalz T. Comparative biomechanical evaluation of two technologically different microprocessor-controlled prosthetic knee joints in safetyrelevant daily-life situations. Biomed Tech (Berl). 2019 Aug 27;64(4):407-420. doi: 10.1515/bmt-2018-0026.
- 3. Bussmann JB, Grootscholten EA, Stam HJ. Daily physical activity and heart rate response in people with a unilateral transtibial amputation for vascular disease. Arch Phys Med Rehabil. 2004 Feb;85(2):240-4. doi: 10.1016/s0003-9993(03)00485-4.
- 4. Bussmann JB, Schrauwen HJ, Stam HJ. Daily physical activity and heart rate response in people with a unilateral traumatic transtibial amputation. Arch Phys Med Rehabil. 2008 Mar;89(3):430-4. doi: 10.1016/j.apmr.2007.11.012.
- 5. Cutti AG, Verni G, Migliore GL, Amoresano A, Raggi M. Reference values for gait temporal and loading symmetry of lower-limb amputees can help in refocusing rehabilitation targets. J Neuroeng Rehabil. 2018 Sep 5;15(Suppl 1):61. doi: 10.1186/s12984-018-0403-x. PMID: 30255808; PMCID: PMC6157035.
- 6. Darter BJ, Wilken JM. Gait training with virtual reality-based real-time feedback: improving gait performance following transfemoral amputation. Phys Ther. 2011 Sep;91(9):1385-94. doi: 10.2522/ptj.20100360.
- 7. Fuenzalida Squella SA, Kannenberg A, Brandão Benetti Â. Enhancement of a prosthetic knee with a microprocessor-controlled gait phase switch reduces falls and improves balance confidence and gait speed in community ambulators with unilateral transfemoral amputation. Prosthet Orthot Int. 2018 Apr;42(2):228-235. doi: 10.1177/0309364617716207
- 8. Garnier YM, Paizis C, Martin A, Lepers R Corticospinal excitability changes following downhill and uphill walking. Exp Brain Res. 2019 Aug;237(8):2023-2033
- 9. Gholizadeh H, Lemaire ED, Sinitski EH. Transtibial amputee gait during slope walking with the unity suspension system. Gait Posture. 2018 Sep;65:205-212. doi: 10.1016/j.gaitpost.2018.07.059.
- 10. Goujon-Pillet H, Sapin E, Fodé P, Lavaste F. Three-dimensional motions of trunk and pelvis during transfemoral amputee gait. Arch Phys Med Rehabil. 2008 Jan;89(1):87- 94. doi: 10.1016/j.apmr.2007.08.136.
- 11. Griffiths B, Diment L, Granat MH. A Machine Learning Classification Model for Monitoring the Daily Physical Behaviour of Lower-Limb Amputees. Sensors (Basel). 2021 Nov 10;21(22):7458. doi: 10.3390/s21227458.
- 12. Hof, At L., Renske M. van Bockel, Tanneke Schoppen, et Klaas Postema. « Control of Lateral Balance in Walking. Experimental Findings in Normal Subjects and above-Knee Amputees ». Gait & Posture 25, no 2 (février 2007): 250 58. doi : 10.1016/j.gaitpost.2006.04.013
- 13. Hutin E, Pradon D, Barbier F, Bussel B, Gracies JM, Roche N. Walking velocity and lower limb coordination in hemiparesis. Gait Posture. 2012 Jun;36(2):205-11. doi: 10.1016/j.gaitpost.2012.02.016.
- 14. Ichimura, Daisuke, Genki Hisano, Hiroto Murata, Toshiki Kobayashi, et Hiroaki Hobara. « Centre of Pressure during Walking after Unilateral Transfemoral Amputation ». Scientific Reports 12, no 1 (19 octobre 2022): 17501
- 15. Jaegers S.M, J H Arendzen, H J de Jongh Prosthetic gait of unilateral transfemoral amputees: a kinematic study Arch Phys Med Rehabil . 1995 Aug;76(8):736-43. doi: 10.1016/s0003-9993(95)80528-1.
- 16. Kesar TM, Binder-Macleod SA, Hicks GE, Reisman DS. Minimal detectable change for gait variables collected during treadmill walking in individuals post- stroke. Gait Posture. 2011 Feb;33(2):314-7. doi: 10.1016/j.gaitpost.2010.11.024.
- 17. Lay A.N, Hass C.J., Gregor R.J., The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis, J. Biomech. 39 (2006) 1621–1628.
- 18. Lura DJ, Wernke MM, Carey SL, Kahle JT, Miro RM, Highsmith MJ. Differences in knee flexion between the Genium and C-Leg microprocessor knees while walking on level ground and ramps. Clin Biomech (Bristol, Avon). 2015 Feb;30(2):175-81. doi: 10.1016/j.clinbiomech.2014.12.003
- 19. Mellema M, Gjøvaag T. Reported Outcome Measures in Studies of Real-World Ambulation in People with a Lower Limb Amputation: A Scoping Review. Sensors (Basel). 2022 Mar 14;22(6):2243. doi: 10.3390/s22062243.
- 20. Mengelkoch LJ, Kahle JT, Highsmith MJ. Energy costs & performance of transtibial amputees & non-amputees during walking & running. Int J Sports Med. 2014 Dec;35(14):1223-8. doi: 10.1055/s-0034-1382056. Epub 2014 Aug
- 21. PMID: 25144429. 21. Miller WC, Deathe AB, Speechley M. Lower extremity prosthetic mobility: a comparison of 3 self-report scales. Arch Phys Med Rehabil. 2001 Oct;82(10):1432-40. doi: 10.1053/apmr.2001.25987
- 22. Möller S, Rusaw D, Hagberg K, Ramstrand N Reduced cortical brain activity with the use of microprocessor-controlled prosthetic knees during walking. Prosthet Orthot Int. 2019 Jun;43(3):257-265
- 23. Morgan SJ, Hafner BJ, Kartin D, Kelly VE. Dual-task standing and walking in people with lower limb amputation: A structured review. Prosthet Orthot Int. 2018 Dec;42(6):652-666.
- 24. Müßig J., Brauner T. , Kröger I., Varady P., Brand A., Klöpfer-Krämer I., Simmel S., Horstmann T., Auga P. Variability in trunk and pelvic movement of transfemoral amputees using a C-leg system compared to healthy controls. Hum Mov Sci. 2019 Dec:68:102539. doi: 10.1016/j.humov.2019.102539. Epub 2019 Nov 1
- 25. Roerdink, Melvyn, Andrea G. Cutti, Aurora Summa, Davide Monari, Davide Veronesi, Mariëlle W. van Ooijen, et Peter J. Beek. « Gaitography Applied to Prosthetic Walking ». Medical & Biological Engineering & Computing 52, no 11 (novembre 2014): 963 69. doi : 10.1007/s11517-014-1195-1
- 26. Rusaw D., Nerrolyn Ramstrand Motion-analysis studies of transtibial prosthesis users: a systematic review Prosthet Orthot Int . 2011 Mar;35(1):8-19. doi: 10.1177/0309364610393060
- 27. Saunders J, Inman V., Eberhart H. The major determinants in normal and pathological gait. The Journal of bone and joint surgery. American volume, (1953), 543-58, 35-A(3)
- 28. Schmid, M., G. Beltrami, D. Zambarbieri, et G. Verni. « Centre of Pressure Displacements in Trans-Femoral Amputees during Gait ». Gait & Posture 21, no 3 (avril 2005): 255 62. doi : 10.1016/j.gaitpost.2004.01.016
- 29. Segal AD, Orendurff MS, Klute GK, McDowell ML, Pecoraro JA, Shofer J, Czerniecki JM. Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees. J Rehabil Res Dev. 2006 Nov-Dec;43(7):857-70. doi: 10.1682/jrrd.2005.09.0147.
- 30. Sions JM, Beisheim EH, Manal TJ, Smith SC, Horne JR, Sarlo FB. Differences in Physical Performance Measures Among Patients With Unilateral Lower-Limb Amputations Classified as Functional Level K3 Versus K4. Arch Phys Med Rehabil. 2018 Jul;99(7):1333-1341. doi: 10.1016/j.apmr.2017.12.033. Epub 2018 Feb 1. PMID: 29410114; PMCID: PMC6019138.
- 31. Sparks R, Madabhushi A. Novel morphometric based classification via diffeomorphic based shape representation using manifold learning. Med Image Comput Comput Assist Interv. 2010;13(Pt 3):658-65. doi: 10.1007/978-3-642-15711-0_82.
- 32. Sturk JA, Lemaire ED, Sinitski EH, Dudek NL, Besemann M, Hebert JS, Baddour N. Maintaining stable transfemoral amputee gait on level, sloped and simulated uneven conditions in a virtual environment. Disabil Rehabil Assist Technol. 2019 Apr;14(3):226-235. doi: 10.1080/17483107.2017.1420250.
- 33. Thibault G, Gholizadeh H, Sinitski E, Baddour N, Lemaire ED. Effects of the unity vacuum suspension system on transtibial gait for simulated non-level surfaces. PLoS One. 2018 Jun 14;13(6):e0199181. doi: 10.1371/journal.pone.0199181.
- 34. Turcot K, Aissaoui R, Boivin K, Hagemeister N, Pelletier M, de Guise JA. Test-retest reliability and minimal clinical change determination for 3-dimensional tibial and femoral accelerations during treadmill walking in knee osteoarthritis patients. Arch Phys Med Rehabil. 2008 Apr;89(4):732-7. doi: 10.1016/j.apmr.2007.09.033.
- 35. van den Bogert AJ, Geijtenbeek T, Even-Zohar O, Steenbrink F, Hardin EC. A realtime system for biomechanical analysis of human movement and muscle function. Med Biol Eng Comput. 2013 Oct;51(10):1069-77. doi: 10.1007/s11517-013-1076-z.
- 36. Van Meter KJ, Basu NB. Signatures of human impact: size distributions and spatial organization of wetlands in the Prairie Pothole landscape. Ecol Appl. 2015 Mar;25(2):451-65. doi: 10.1890/14-0662.1.
- 37. Vrieling A.H., Van Keeken H.G., Schoppen T., Otten E., Halbertsma J.P.K., Hof A.L., Postema K., Uphill and downhill walking in unilateral lower limb amputees, Gait Posture 28 (2008) 235–242.
- 38. Wolf EJ, Everding VQ, Linberg AL, Schnall BL, Czerniecki JM, Gambel JM. Assessment of transfemoral amputees using C-Leg and Power Knee for ascending and descending inclines and steps. J Rehabil Res Dev. 2012;49(6):831-42. doi: 10.1682/jrrd.2010.12.0234.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Identyfikator YADDA
bwmeta1.element.baztech-e8a431c4-38ce-4f2f-aff4-8dee9a1e0feb