Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The continued development of microprocessor-based knee prostheses has improved the independence of people with a femoral amputation in many environments. This study aimed to describe the effect of slopes on kinematic joint variables and segmental asymmetry.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
- University Hospital for Rehabilitation of Le Grau du Roi, University Hospital Center of Nimes, University of 8 Medicine Montpellier/Nimes, French Federation of Disabled Sports, France
autor
- Fondation Garches, France
autor
- UMR1179 Endicap, INSER-UVSQ, France
- Pôle Parasport – ISPC, CHU Raymond Poincaré – APHP, France
Bibliografia
- 1. Baker, Richard, Alberto Esquenazi, Maria G. Benedetti, et Kaat Desloovere. « Gait Analysis: Clinical Facts ». European Journal of Physical and Rehabilitation Medicine 52, no 4 (août 2016): 560 74.
- 2. Bellmann M, Köhler TM, Schmalz T. Comparative biomechanical evaluation of two technologically different microprocessor-controlled prosthetic knee joints in safetyrelevant daily-life situations. Biomed Tech (Berl). 2019 Aug 27;64(4):407-420. doi: 10.1515/bmt-2018-0026.
- 3. Bussmann JB, Grootscholten EA, Stam HJ. Daily physical activity and heart rate response in people with a unilateral transtibial amputation for vascular disease. Arch Phys Med Rehabil. 2004 Feb;85(2):240-4. doi: 10.1016/s0003-9993(03)00485-4.
- 4. Bussmann JB, Schrauwen HJ, Stam HJ. Daily physical activity and heart rate response in people with a unilateral traumatic transtibial amputation. Arch Phys Med Rehabil. 2008 Mar;89(3):430-4. doi: 10.1016/j.apmr.2007.11.012.
- 5. Cutti AG, Verni G, Migliore GL, Amoresano A, Raggi M. Reference values for gait temporal and loading symmetry of lower-limb amputees can help in refocusing rehabilitation targets. J Neuroeng Rehabil. 2018 Sep 5;15(Suppl 1):61. doi: 10.1186/s12984-018-0403-x. PMID: 30255808; PMCID: PMC6157035.
- 6. Darter BJ, Wilken JM. Gait training with virtual reality-based real-time feedback: improving gait performance following transfemoral amputation. Phys Ther. 2011 Sep;91(9):1385-94. doi: 10.2522/ptj.20100360.
- 7. Fuenzalida Squella SA, Kannenberg A, Brandão Benetti Â. Enhancement of a prosthetic knee with a microprocessor-controlled gait phase switch reduces falls and improves balance confidence and gait speed in community ambulators with unilateral transfemoral amputation. Prosthet Orthot Int. 2018 Apr;42(2):228-235. doi: 10.1177/0309364617716207
- 8. Garnier YM, Paizis C, Martin A, Lepers R Corticospinal excitability changes following downhill and uphill walking. Exp Brain Res. 2019 Aug;237(8):2023-2033
- 9. Gholizadeh H, Lemaire ED, Sinitski EH. Transtibial amputee gait during slope walking with the unity suspension system. Gait Posture. 2018 Sep;65:205-212. doi: 10.1016/j.gaitpost.2018.07.059.
- 10. Goujon-Pillet H, Sapin E, Fodé P, Lavaste F. Three-dimensional motions of trunk and pelvis during transfemoral amputee gait. Arch Phys Med Rehabil. 2008 Jan;89(1):87- 94. doi: 10.1016/j.apmr.2007.08.136.
- 11. Griffiths B, Diment L, Granat MH. A Machine Learning Classification Model for Monitoring the Daily Physical Behaviour of Lower-Limb Amputees. Sensors (Basel). 2021 Nov 10;21(22):7458. doi: 10.3390/s21227458.
- 12. Hof, At L., Renske M. van Bockel, Tanneke Schoppen, et Klaas Postema. « Control of Lateral Balance in Walking. Experimental Findings in Normal Subjects and above-Knee Amputees ». Gait & Posture 25, no 2 (février 2007): 250 58. doi : 10.1016/j.gaitpost.2006.04.013
- 13. Hutin E, Pradon D, Barbier F, Bussel B, Gracies JM, Roche N. Walking velocity and lower limb coordination in hemiparesis. Gait Posture. 2012 Jun;36(2):205-11. doi: 10.1016/j.gaitpost.2012.02.016.
- 14. Ichimura, Daisuke, Genki Hisano, Hiroto Murata, Toshiki Kobayashi, et Hiroaki Hobara. « Centre of Pressure during Walking after Unilateral Transfemoral Amputation ». Scientific Reports 12, no 1 (19 octobre 2022): 17501
- 15. Jaegers S.M, J H Arendzen, H J de Jongh Prosthetic gait of unilateral transfemoral amputees: a kinematic study Arch Phys Med Rehabil . 1995 Aug;76(8):736-43. doi: 10.1016/s0003-9993(95)80528-1.
- 16. Kesar TM, Binder-Macleod SA, Hicks GE, Reisman DS. Minimal detectable change for gait variables collected during treadmill walking in individuals post- stroke. Gait Posture. 2011 Feb;33(2):314-7. doi: 10.1016/j.gaitpost.2010.11.024.
- 17. Lay A.N, Hass C.J., Gregor R.J., The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis, J. Biomech. 39 (2006) 1621–1628.
- 18. Lura DJ, Wernke MM, Carey SL, Kahle JT, Miro RM, Highsmith MJ. Differences in knee flexion between the Genium and C-Leg microprocessor knees while walking on level ground and ramps. Clin Biomech (Bristol, Avon). 2015 Feb;30(2):175-81. doi: 10.1016/j.clinbiomech.2014.12.003
- 19. Mellema M, Gjøvaag T. Reported Outcome Measures in Studies of Real-World Ambulation in People with a Lower Limb Amputation: A Scoping Review. Sensors (Basel). 2022 Mar 14;22(6):2243. doi: 10.3390/s22062243.
- 20. Mengelkoch LJ, Kahle JT, Highsmith MJ. Energy costs & performance of transtibial amputees & non-amputees during walking & running. Int J Sports Med. 2014 Dec;35(14):1223-8. doi: 10.1055/s-0034-1382056. Epub 2014 Aug
- 21. PMID: 25144429. 21. Miller WC, Deathe AB, Speechley M. Lower extremity prosthetic mobility: a comparison of 3 self-report scales. Arch Phys Med Rehabil. 2001 Oct;82(10):1432-40. doi: 10.1053/apmr.2001.25987
- 22. Möller S, Rusaw D, Hagberg K, Ramstrand N Reduced cortical brain activity with the use of microprocessor-controlled prosthetic knees during walking. Prosthet Orthot Int. 2019 Jun;43(3):257-265
- 23. Morgan SJ, Hafner BJ, Kartin D, Kelly VE. Dual-task standing and walking in people with lower limb amputation: A structured review. Prosthet Orthot Int. 2018 Dec;42(6):652-666.
- 24. Müßig J., Brauner T. , Kröger I., Varady P., Brand A., Klöpfer-Krämer I., Simmel S., Horstmann T., Auga P. Variability in trunk and pelvic movement of transfemoral amputees using a C-leg system compared to healthy controls. Hum Mov Sci. 2019 Dec:68:102539. doi: 10.1016/j.humov.2019.102539. Epub 2019 Nov 1
- 25. Roerdink, Melvyn, Andrea G. Cutti, Aurora Summa, Davide Monari, Davide Veronesi, Mariëlle W. van Ooijen, et Peter J. Beek. « Gaitography Applied to Prosthetic Walking ». Medical & Biological Engineering & Computing 52, no 11 (novembre 2014): 963 69. doi : 10.1007/s11517-014-1195-1
- 26. Rusaw D., Nerrolyn Ramstrand Motion-analysis studies of transtibial prosthesis users: a systematic review Prosthet Orthot Int . 2011 Mar;35(1):8-19. doi: 10.1177/0309364610393060
- 27. Saunders J, Inman V., Eberhart H. The major determinants in normal and pathological gait. The Journal of bone and joint surgery. American volume, (1953), 543-58, 35-A(3)
- 28. Schmid, M., G. Beltrami, D. Zambarbieri, et G. Verni. « Centre of Pressure Displacements in Trans-Femoral Amputees during Gait ». Gait & Posture 21, no 3 (avril 2005): 255 62. doi : 10.1016/j.gaitpost.2004.01.016
- 29. Segal AD, Orendurff MS, Klute GK, McDowell ML, Pecoraro JA, Shofer J, Czerniecki JM. Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees. J Rehabil Res Dev. 2006 Nov-Dec;43(7):857-70. doi: 10.1682/jrrd.2005.09.0147.
- 30. Sions JM, Beisheim EH, Manal TJ, Smith SC, Horne JR, Sarlo FB. Differences in Physical Performance Measures Among Patients With Unilateral Lower-Limb Amputations Classified as Functional Level K3 Versus K4. Arch Phys Med Rehabil. 2018 Jul;99(7):1333-1341. doi: 10.1016/j.apmr.2017.12.033. Epub 2018 Feb 1. PMID: 29410114; PMCID: PMC6019138.
- 31. Sparks R, Madabhushi A. Novel morphometric based classification via diffeomorphic based shape representation using manifold learning. Med Image Comput Comput Assist Interv. 2010;13(Pt 3):658-65. doi: 10.1007/978-3-642-15711-0_82.
- 32. Sturk JA, Lemaire ED, Sinitski EH, Dudek NL, Besemann M, Hebert JS, Baddour N. Maintaining stable transfemoral amputee gait on level, sloped and simulated uneven conditions in a virtual environment. Disabil Rehabil Assist Technol. 2019 Apr;14(3):226-235. doi: 10.1080/17483107.2017.1420250.
- 33. Thibault G, Gholizadeh H, Sinitski E, Baddour N, Lemaire ED. Effects of the unity vacuum suspension system on transtibial gait for simulated non-level surfaces. PLoS One. 2018 Jun 14;13(6):e0199181. doi: 10.1371/journal.pone.0199181.
- 34. Turcot K, Aissaoui R, Boivin K, Hagemeister N, Pelletier M, de Guise JA. Test-retest reliability and minimal clinical change determination for 3-dimensional tibial and femoral accelerations during treadmill walking in knee osteoarthritis patients. Arch Phys Med Rehabil. 2008 Apr;89(4):732-7. doi: 10.1016/j.apmr.2007.09.033.
- 35. van den Bogert AJ, Geijtenbeek T, Even-Zohar O, Steenbrink F, Hardin EC. A realtime system for biomechanical analysis of human movement and muscle function. Med Biol Eng Comput. 2013 Oct;51(10):1069-77. doi: 10.1007/s11517-013-1076-z.
- 36. Van Meter KJ, Basu NB. Signatures of human impact: size distributions and spatial organization of wetlands in the Prairie Pothole landscape. Ecol Appl. 2015 Mar;25(2):451-65. doi: 10.1890/14-0662.1.
- 37. Vrieling A.H., Van Keeken H.G., Schoppen T., Otten E., Halbertsma J.P.K., Hof A.L., Postema K., Uphill and downhill walking in unilateral lower limb amputees, Gait Posture 28 (2008) 235–242.
- 38. Wolf EJ, Everding VQ, Linberg AL, Schnall BL, Czerniecki JM, Gambel JM. Assessment of transfemoral amputees using C-Leg and Power Knee for ascending and descending inclines and steps. J Rehabil Res Dev. 2012;49(6):831-42. doi: 10.1682/jrrd.2010.12.0234.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Brak numeracji stron
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8a431c4-38ce-4f2f-aff4-8dee9a1e0feb