PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CFD study of the Effect of Piston Crevice Volume on the Temperature Distribution in a Rapid Compression Machine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the conditions for controlling the aerodynamics in the reaction chamber is designing a crevice volume on the surface of the piston head. The importance of the crevice volume is to contain the cool boundary layers generated as a resulting of the moving reactor piston. However, this crevice volume consequently drops the end gas pressure and temperature at the end of the stroke. The CFD study of the aerodynamic effect of a piston movement in a reaction chamber was modelled using the commercial code of Ansys Fluent and assuming a 2-Dimensional computational moving mesh. A starting optimal crevice volume of 282 mm3 was used for further optimisation. This resulted in five crevice lengths of 3 mm, 5 mm, 7 mm, 9 mm and 12 mm, respectively. The crevice height of 5 mm was found to improve the compressed gas pressure at the end of the stroke to about 2 bar and temperature about 17.7 K and also maintained a uniform temperature field, while that of 12 mm had the least peak compressed gas pressure. This study investigated the possible means of improving the peak pressure and temperature drop in a rapid compression machine by further optimisation of the crevice volume.
Twórcy
autor
  • Energy and Fluid Science Engineering Group, Department of Mechanical Engineering, Cross River University of Technology, Calabar, Nigeria
  • Department of Mechanical Engineering, University of Port Harcourt, Rivers State, Nigeria
  • Energy and Fluid Science Engineering Group, Department of Mechanical Engineering, Cross River University of Technology, Calabar, Nigeria
  • Energy and Fluid Science Engineering Group, Department of Mechanical Engineering, Cross River University of Technology, Calabar, Nigeria
Bibliografia
  • 1. Mittal, G. and Gupta, S., Computational assessment of an approach for implementing crevice containment in rapid compression machines, Fuel, vol. 102, 2012, pp. 536-44.
  • 2. Goldsborough, S. S., Banyon, C., and Mittal, G., A computationally efficient, physics-based model for simulating heat loss during compression and the delay period in RCM experiments, Combustion and Flame, vol. 159, 2012, pp. 3476-92.
  • 3. Griffiths, J. F., Jiao, Q., Schreiber, M., et al., Development of thermokinetic models for autoignition in a CFD Code: Experimental validation and application of the results to rapid compression studies, Symposium (International) on Combustion, vol. 24, 1992, pp. 1809-15.
  • 4. Desgroux, P., Gasnot, L., and Sochet, L. R., Instantaneous temperature measurement in a rapid-compression machine using laser Rayleigh scattering, Applied Physics B Laser and Optics, vol. 61, 1995, pp. 69-72.
  • 5. Lee, D. and Hochgreb, S., Rapid compression machines: Heat transfer and suppression of corner vortex, Combustion and Flame, vol. 114, Aug-Sep 1998, pp. 531-45.
  • 6. Griffiths, J. F., MacNamara, J. P., Mohamed, C., et al., Temperature fields during the development of autoignition in a rapid compression machine, Faraday Discussions, vol. 119, 2001, pp. 287-303.
  • 7. Mittal, G. and Sung, C. J., Aerodynamics inside a rapid compression machine, Combustion and Flame, vol. 145, 2006, pp. 160-80.
  • 8. Mittal, G. and Sung, C.-J., Aerodynamics inside a rapid compression machine, Combustion and Flame, vol. 145, 2006, pp. 160-80.
  • 9. Würmel, J. and Simmie, J. M., CFD studies of a twin-piston rapid compression machine, Combustion and Flame, vol. 141, 2005, pp. 417-30.
  • 10. Brett, L., Macnamara, J., Musch, P., et al., Simulation of methane autoignition in a rapid compression machine with creviced pistons, Combustion and Flame, vol. 124, 2001, pp. 326-29.
  • 11. Lee, D. and Hochgreb, S., Rapid Compression Machines: Heat Transfer and Suppression of Corner Vortex, Combustion and Flame, vol. 114, 1998, pp. 531-45.
  • 12. Park, P., Rapid compression machine measurements of ignition delays for primary reference fuels, Massachusetts Institute of Technology, 1990.
  • 13. Park, P. and Keck, J. C., Rapid compression machine measurements of ignition delays for primary reference fuels, SAE Technical Paper 1990.
  • 14. Lee, D. and Hochgreb, S., Rapid compression machines: Heat transfer and suppression of corner vortex, Combustion and Flame, vol. 114, 1998, pp. 531-45.
  • 15. Brett, L., MacNamara, J., Musch, P., et al., Simulation of methane autoignition in a rapid compression machine with creviced pistons, Combustion and flame, vol. 124, 2001, pp. 326-29.
  • 16. Griffiths, J. F., Piazzesi, R., Sazhina, E. M., et al., CFD modelling of cyclohexane auto-ignition in an RCM, Fuel, vol. 96, 2012, pp. 192-203.
  • 17. Mittal, G., A rapid compression machine – design, characterization, and autoignition investigations. Ph.D Thesis, Mechanical and Aerospace Engineering, Case Western Reserve University, Mechanical Engineering, 2006.
  • 18. Mittal, G., Raju, M. P., and Sung, C.-J., Computational fluid dynamics modeling of hydrogen ignition in a rapid compression machine, Combustion and Flame, vol. 155, 2008, pp. 417-28.
  • 19. Mittal, G., Raju, M. P., and Sung, C.-J., CFD modeling of two-stage ignition in a rapid compression machine: Assessment of zero-dimensional approach, Combustion and Flame, vol. 157, 2010, pp. 1316-24.
  • 20. Mittal, G., Raju, M. P., and Bhari, A., A numerical assessment of the novel concept of crevice containment in a rapid compression machine, Combustion and Flame, vol. 158, 2011, pp. 2420-27.
  • 21. Nyong, O., Development of a Rapid Compression Machine for Screening Alternative Fuel for Gas Turbines, University of Sheffield, 2017.
  • 22. Nyong, O., Woolley, R., Blakey, S., et al., Optimal piston crevice study in a rapid compression machine, in IOP Conference Series: Materials Science and Engineering, 2017, p. 012018.
  • 23. Lemmon, E., McLinden, M., and Friend, D., Thermophysical Properties of Fluid Systems in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. Linstrom, PJ and Mallard, WG, National Institute of Standards and Technology, Gaithersburg MD, 20899, webbook. nist. gov/chemistry/fluids (accessed April, 2015), 2011.
  • 24. Goldsborough, S. S. and Potokar, C. J., The influence of crevice flows and blow-by on the charge motion and temperature profiles within a Rapid Compression Expansion Machine used for chemical kinetic (HCCI) studies, SAE Paper, 2007, pp. 01-0169.
  • 25. Mittal, G. and Chomier, M., Interpretation of experimental data from rapid compression machines without creviced pistons, Combustion and Flame, 2013.
  • 26. Issa, R. I., Gosman, A. D., and Watkins, A. P., The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme, Journal of Computational Physics, vol. 62, 1986, pp. 66-82.
  • 27. Anderson, J. D., Computational fluid dynamics vol. 206: McGraw-Hill New York, 1995.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8983922-c43f-4417-a305-e36630f32f25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.