PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A proposal for a mobile system of vehicle and rail track diagnostics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The proper technical condition of a vehicle and rail track in operation is a key aspect in terms of safety and travel comfort. This issue is of particular importance for operators and managers of rolling stock and rail infrastructure. Currently, many diagnostic systems have been developed to monitor the technical condition of selected vehicle systems or rail track from the viewpoints of both the vehicle and track. This article proposes the use of vibration signals in selected quantitative and qualitative analyses as the main diagnostic parameter. For this purpose, over a dozen vibration measurements were carried out during the normal operation of a freight wagon as part of a so-called passive experiment. Measurement points were located on the axle boxes of the wheelsets. The proposed research methodology served as a basis for comparative analyses of the selected operational cases that were investigated. The most important conclusion from the study is that it is possible to monitor the technical condition of vehicles and tracks in real time on the basis of measurements of vibration accelerations at the vehicle level. This directly increases the service life of rolling stock and optimises operating costs by changing the maintenance strategy to one that takes into account the idea of modern on-board technical diagnostics. Another important aspect is the possibility of the varied use of the proposed measurement system, depending on the purpose of the research, which is also associated with the diagnostician’s experience in processing vibroacoustic signals and the utilization of simple or complex quantitative and qualitative analyses.
Czasopismo
Rocznik
Strony
45--56
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
  • Poznan University of Technology; 5 M. Skłodowska-Curie Square, 60-965 Poznan, Poland
  • Poznan University of Technology; 5 M. Skłodowska-Curie Square, 60-965 Poznan, Poland
  • Poznan University of Technology; 5 M. Skłodowska-Curie Square, 60-965 Poznan, Poland
Bibliografia
  • 1. Niziński, S. & Michalski, R. Diagnostics of technical objects. Radom (Poland): ITeE; 2002.
  • 2. Sowa, A. Theory of operation and diagnostics of rail vehicles. Cracow: Publishing House of the Cracow University of Technology. 2019. 255 p.
  • 3. Chudzikiewicz, A. & Deuszkiewicz, P. & Radkowski, S. Problems in diagnosing rail vehicles. In: II International Congres of Technical Diagnostics. Warsaw, 2000. P. 1-6.
  • 4. Nowakowski, T. & Motyl, M. & Babiak, A. Simplified diagnosis of the drive system in the operation of the rail vehicle. Problemy Kolejnictwa – Railway Reports. 2019. No. 2(182). P. 49-54.
  • 5. Antkowiak, T. & Pawlak, Z. The technical diagnosis of the running systems of the railway traction vehicle. TTS Tech Transp Szyn. 2014. No. 21(10). P. 33-41.
  • 6. Voestalpine. Rolling stock failure detection system while driving - ASDEK. Available at: http://tens.pl/articles/173/n/5.
  • 7. PKP PLK S.A. Technical and operational guidelines for equipment for detecting emergency states of rolling stock: Ie-3. Warsaw. 2019.
  • 8. Wabtec Corporation. RailBAM - Bearing Acoustic Monitor. Available at: https://www.wabteccorp.com/digital-electronics/signaling-communications-wayside/assetmanagement/bearing-acoustic-monitor-railbam.
  • 9. P.U.T. GRAW. WFDS - Wheel Flats Detection System. Available at: http://www.graw.com/en/wheel-measurement/wheel-flats-and-out-of-roundness-wheel-detectionsystem. html.
  • 10. Madejski, J. Automatic detection of flats on the rolling stock wheels. Journal of Achievements in Materials and Manufacturing Engineering. 2006. Vol. 16. No. 1. P. 160-163.
  • 11. Müller-Bbm Rail Technologies. Wheel Monitoring System (WMS). Available at: https://www.muellerbbm-rail.com/products/wheel-monitoring-system/.
  • 12. Psiacoustic. The ACRAMOS measurement system - Vehicle selective monitoring of noise and vibration generation from rolling stock. Available at: http://www.acramos.at/pdf/acramosInfo03-2009_en.pdf.
  • 13. Deutzer, M. Dynamic evaluation of track condition on transit rolling stock – case study. Verkehr und Technik. 2007. Vol. 5.
  • 14. Brizuela, J. & Fritsch, C. & Ibáñez, A. Railway wheel-flat detection and measurement by ultrasound. Transp Res Part C Emerg Technol. 2011. Vol. 19(6). P. 975-984. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0968090X11000556.
  • 15. Li, Y. & Zuo, M.J. & Lin, J. & Liu, J. Fault detection method for railway wheel flat using an adaptive multiscale morphological filter. Mech Syst Signal Process. 2017. Vol. 84. P. 642-658.
  • 16. Komorski, P. & Nowakowski, T. & Szymanski, G.M. & Tomaszewski, F. Application of Time-Frequency Analysis of Acoustic Signal to Detecting Flat Places on the Rolling Surface of a Tram Wheel. In: Springer Proceedings in Mathematics and Statistics. 2018.
  • 17. Komorski, P. & Szymanski, G.M. & Nowakowski, T. & Orczyk, M. Advanced acoustic signal analysis used for wheel-flat detection. Lat Am J Solids Struct. 2021. Vol. 18(1). P. 1-14. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252021000100504&tlng=en.
  • 18. Nowakowski, T. & Komorski, P. & Szymanski, G.M. & Tomaszewski, F. Wheel-flat detection on trams using envelope analysis with Hilbert transform. Lat Am J Solids Struct. 2019. Vol. 16(1). P. 1-16. DOI: http://dx.doi.org/10.1590/1679-78255010.
  • 19. Nowakowski, T. & Komorski, P. Diagnostics of the drive shaft bearing based on vibrations in the high-frequency range as a part of the vehicle’s self-diagnostic system. Eksploatacja i Niezawodność - Maintenance and Reliability. 2021. Vol. 24. No. 1. P. 70-79. Available at: http://www.ein.org.pl/sites/default/files/2022-01-09.pdf.
  • 20. Zhang, D. & Entezami, M. & Stewart, E. & Roberts, C. & Yu, D. A novel Doppler Effect reduction method for wayside acoustic train bearing fault detection systems. Applied Acoustics. 2019. Vol. 145. P. 112-124. DOI: http://dx.doi.org/10.1016/j.apacoust.2018.09.017.
  • 21. Wang, J. & He, Q. & Kong, F. A new synthetic detection technique for trackside acoustic identification of railroad roller bearing defects. Applied Acoustics. 2014. Vol. 85. P. 69-81. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0003682X14001029.
  • 22. Vidovic, I. & Marschnig, S. Optical Fibres for Condition Monitoring of Railway Infrastructure –Encouraging Data Source or Errant Effort? Applied Sciences. 2020. Vol. 10. No. 17. P. 6016. Available at: https://www.mdpi.com/2076-3417/10/17/6016.
  • 23. Roveri, N. & Carcaterra, A. & Sestieri, A. Real-time monitoring of railway infrastructures using fibre Bragg grating sensors. Mechanical Systems and Signal Processing. 2015. Vol. 60. P. 14-28. DOI: http://dx.doi.org/10.1016/j.ymssp.2015.01.003.
  • 24. Kouroussis, G. & Kinet, D. & Moeyaert, V. & Dupuy, J. & Caucheteur, C. Railway structure monitoring solutions using fibre Bragg grating sensors. International Journal of Rail Transportation. 2016. Vol. 4. No. 3. P. 135-150. Available at: http://www.tandfonline.com/doi/full/10.1080/23248378.2016.1184598.
  • 25. Uhl T. Modern methods of monitoring and diagnosing structures. Gliwice (Poland): AGH. 2010. 62 p.
  • 26. Worden, K. & Farrar, CR. & Haywood, J. & Todd, M. A review of nonlinear dynamics applications to structural health monitoring. Struct Control Heal Monit. 2008. Vol. 15. P. 540-567.
  • 27. Bruni, S. & Goodall, R. & Mei, T.X. & Tsunashima, H. Control and monitoring for railway vehicle dynamics. Vehicle System Dynamics. 2007. Vol. 45(7-8). P. 743-779.
  • 28. Hayashi, Y. & Kojima, T. & Tsunashima, H. & Marumo, Y. Real time fault detection of railway vehicles and tracks. 2006 IET International Conference on Railway Condition Monitoring. 2006. P. 20-25.
  • 29. Bernal, E. & Spiryagin, M. & Cole, C. Onboard Condition Monitoring Sensors, Systems and Techniques for Freight Railway Vehicles: A Review. IEEE Sensors Journal. 2019. Vol. 19, No. 1. P. 4-24. Available at: https://ieeexplore.ieee.org/document/8488578/.
  • 30. Ngigi, R.W. & Pislaru, C. & Ball. A. & Gu, F. Modern techniques for condition monitoring of railway vehicle dynamics. J Phys Conf Ser. 2012. Vol. 364(1). P. 1-14.
  • 31. Li, P. & Goodall, R. & Weston. P & Seng Ling, C. & Goodman, C. & Roberts, C. Estimation of railway vehicle suspension parameters for condition monitoring. Control Eng Pract. 2007. Vol. 15(1). P. 43-55.
  • 32. Mei, T.X. & Ding, X.J. A model-less technique for the fault detection of rail vehicle suspensions. Veh Syst Dyn. 2008. Vol. 46 (Suppl. 1). P. 277-287.
  • 33. Mei, T.X. & Ding, X.J. Condition monitoring of rail vehicle suspensions based on changes in system dynamic interactions. Veh Syst Dyn. 2009. Vol. 47(9). P. 1167-1181.
  • 34. Wei, X. & Jia, L. & Liu, H. A comparative study on fault detection methods of rail vehicle suspension systems based on acceleration measurements. Veh Syst Dyn. 2013. Vol. 51(5). P. 700-720.
  • 35. Zhang, B. & Tan, A.C.C. & Lin J Hui. Gearbox fault diagnosis of high-speed railway train. Eng Fail Anal. 2016. Vol. 66. P. 407-420. DOI: http://dx.doi.org/10.1016/j.engfailanal.2016.04.020.
  • 36. Delvecchio, S. & Bonfiglio, P. & Pompoli, F. Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing techniques. Mech Syst Signal Process. 2018. Vol. 99. P. 661-683. DOI: http://dx.doi.org/10.1016/j.ymssp.2017.06.033.
  • 37. Srivani, A. & Arunkumar, T. & DenisAshok, S. Fourier Harmonic Regression Method for Bearing Condition Monitoring using Vibration Measurements. Int Conf Mater Manuf Model - Proc. 2018. Vol. 5(5). P. 12151-1260.
  • 38. Zhang, H. & Lu, S. & He, Q. & Kong, F. Multi-bearing defect detection with trackside acoustic signal based on a pseudo time-frequency analysis and Dopplerlet filter. Mechanical Systems and Signal Processing. March 2016. Vol. 70-71. P. 176-200. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0888327015004549.
  • 39. Chudzikiewicz, A. Monitoring the state of the dynamic system of a rail vehicle-track interaction (MONIT project). Warsaw: Publishing House of the Warsaw University of Technology. 2012.
  • 40. Thompson, DJ. Railway Noise and Vibration: Mechanisms, Modelling and Means of Control. Southampton: Elsevier. 2008. 536 p.
  • 41. Cempel, C. Vibroacoustic condition monitoring (Ellis Horwood Series in Mechanical Engineering). Haddad, S.D. (editor). Warsaw: Ellis Horwood. 1993. 350 p.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e8963064-ed7e-4d2e-9824-2ca96841b614
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.