PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza wpływu wysokiej temperatury na zmianę wybranych parametrów wytrzymałościowych fibrobetonu z dodatkiem włókien polipropylenowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Analysis of influence of high temperature on changes of the selected strength parameters of fiber reinforced concrete with polypropylene fibers
Języki publikacji
PL
Abstrakty
PL
W niniejszym referacie autorzy zaprezentowali wyniki badań wytrzymałościowych, których celem była analiza oddziaływania wysokich temperatur występujących podczas pożaru na wytrzymałość fibrobetonu z włóknami polipropylenowymi oraz oszacowanie wielkości spadku wytrzymałości na ściskanie w porównaniu z betonem tej samej klasy bez dodatku włókien. Dodatkowo omówiono procedury badawcze oraz wyniki badań modułu sprężystości fibrobetonu z dodatkiem włókien polipropylenowych poddanego oddziaływaniu wysokiej temperatury zbliżonej do temperatury występującej w środowisku pożaru. Podczas badań stwierdzono korzystny wpływ dodatku włókien polipropylenowych w ilości 1,2 kg/m3 oraz dozowanych do mieszanki betonowej powyżej 1,2 kg/m3 na właściwości wytrzymałościowe betonu w wysokich temperaturach.
EN
In construction engineering practice impact of high temperatures occurring during fire on the concrete structures is an important issue. An unfavorable phenomenon associated with high temperature is surface spalling of large concrete parts, which has a significant impact on the safety of the whole building structure, users and rescue teams. “Concrete thermal spalling” phenomenon in the foreign literature is called “spalling“. One of the possibilities of preventing this negative phenomenon is a technological method consisting in addition of polypropylene fibers to concrete mix. The method results in the increase of resistance of the concrete structure to the explosive spalling in the conditions of increased humidity. In the road tunnels and other non-heated compartments, concrete is characterized by the relatively high water content. The results of many tests prove that the addition of polypropylene fibers (PP) can have a positive impact on the concrete structures subjected to high temperatures and can reflect to the reduction of “spalling” effect. Investigations of high temperatures impact occurring during the fire, on the basic strength parameters of the concrete with addition of polypropylene fibers, were carried out in Poland, at Cracow University of Technology and Main School of Fire Services, among the others. Zoja Bednarek and Tomasz Drzymala conducted investigations at the Main School of Fire Services. During the studies advantageous effect of the addition of 1.2 kg/m3 and above of polypropylene fibers to the concrete mix on the concrete strength properties at high temperatures have been demonstrated. In the presented paper the results of strength tests are shown, which aimed at analyzing the impact of high temperatures occurring during the fire on the strength of fiber reinforced concrete with polypropylene fibers, as well as estimating reduction of compressive strength compared to the concrete of the same class but without addition of fibers. Additionally, the applied research methods are discussed and elasticity modulus test results of fiber reinforced concrete subjected to high temperatures close to fire temperatures are presented. Taking into account the undoubtedly positive influence of PP fibers addition on the reduction of concrete “spalling”, the authors investigated the manner in which such addition influences different strength properties of the concrete at high temperatures conditions. From this point of view the impact of high temperatures on the compressive strength and elasticity modulus were investigated. Samples were prepared with the use of normal C30/37 class concrete and high strength C60/75 class concrete. For the concrete mix three different types of polypropylene fibers were used, differing in length and thickness of single fibers, in the following amount: 0.6 kg/m3, 0.9 kg/m3, and 1.2 kg/m3. The selected fibers used as the additives to concrete mix are easily available on the European market. Preliminary studies were carried out to deter-mine the influence of fire temperatures on the flammable properties of fibers in oxygen and nitrogen atmosphere. The conducted studies have demonstrated a significant impact of the atmosphere, in which degradation of samples take place, on the results of TG and DTG analysis. The atmosphere had a crucial effect on the initial temperature of degradation, temperature of the partial mass loss, temperature of termination of degradation, temperature of maximum mass loss rate and nondegradable residues mass remaining in the concrete. The results of the studies allow assuming that in the condi-tions of oxygen depletion, degradation of PP fibers in the concrete would occur much slower. The above assumption has been confirmed by the observations of the concrete structure, by means of scanning microscope (SEM), with regards to the fibers condition inside the concrete samples. Based on the obtained results the following conclusions have been formulated: 1. The addition of PP fibers has a negative impact on the compressive strength of C30/37 class concrete, especially in normal temperatures and temperatures raised to about 200ºC. Above 300ºC a reduction of strength of this concrete is identical to the strength reduction of the concrete without PP fiber addition. 2. In case of fiber reinforced concrete and C60/75 class concrete, compressive strength reduction in the whole temperature range can be considered as identical. 3. No significant influence of the type of the applied PP fibers on the reduction of compressive strength for both classes of fiber reinforced concrete has been demonstrated. 4. In case of both classes of fiber reinforced concrete the compressive strength is reduced in high temperatures. Moreover, the strength reduction of C30/37 concrete proceeds faster. At 800ºC the strength of normal concrete and fiber reinforced concrete of C30/37 class decreases of about 90%, whereas in case of concrete and fiber reinforced concrete of C60/75 class such reduction occurs at 1000ºC. 5. Analyzing the results with regards to the impact of PP fibers addition to the concrete in the quantities above 1.2 kg/m3, it can be concluded that such addition does not enhance strength reduction of the concrete in fire temperatures. Therefore, in case of fiber reinforced concrete the identical principles can be applied for strength determination, as in case of the concrete without PP fibers in fire temperatures. The reduced compressive strength of the concrete with addition of PP fibers in temperature T can be described by the following formula: fck(T) = kc (T) ... fck ---- (1) where: fck – specific compressive strength of fiber reinforced concrete at normal temperature (20ºC) kc(T) – assumed reduction coefficient as for the corresponding class concrete without addition of fibers. 6. Based on the results analysis a positive impact of PP addition on the elasticity modulus of C30/37 and C60/75 class concrete in high fire temperatures can be concluded. 7. In both cases higher growing tendencies have been observed for C30/37. In normal temperature no impact of PP fibers addition on the elasticity modulus values can be noticed. 8. At the elevated and high temperatures a slightly lower elasticity modulus reduction in case of fiber reinforced concrete with PP fibers can be observed. It is especially evident at 300ºC. Summing up: addition of 1.2 kg/m3 of polypropylene fibers to the concrete, in order to reinforce the concrete against dangerous explosive spalling during the fire, is advantageous also from the point of view of the concrete strength at fire temperatures.
Rocznik
Tom
Strony
127--138
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Zakład Mechaniki Stosowanej, Szkoła Główna Służby Pożarniczej
autor
  • Zakład Podstaw Budownictwa i Materiałów Budowlanych, Szkoła Główna Służby Pożarniczej
Bibliografia
  • [1] Anderberg Y.: Spalling Phenomena of HPC and OC. NIST Workshop on Fire Performance of High Strength Concrete, February 13 - 14, Gaithersburg 1997.
  • [2] Bazant Z.P., Kaplan M. F.: Concrete at High Temperatures. Material Properties and Mathematical Models, Longman, Harlow, 1996.
  • [3] Bednarek Z., Drzymała T.: Wpływ temperatur występujących podczas pożaru na wytrzymałość na ściskanie fibrobetonu. Zeszyty Naukowe SGSP 2008, nr 36.
  • [4] Bednarek Z., Drzymała T.: Wytrzymałość na ściskanie fibrobetonu z dodatkiem włókien polipropylenowych w warunkach termicznych pożarów. VI Międzynarodowa Konferencja Bezpieczeństwo Pożarowe Budowli, Warszawa 18 – 19 listopada 2008.
  • [5] Bednarek Z., Krzywobłocka-Laurów R., Drzymała T.: Effect of high temperature on the structure phase composition and strength of concrete. Zeszyty Naukowe SGSP 2009, nr 37.
  • [6] Bednarek Z., Drzymała T.: Influence of high temperature and type of polypropylene fibres on compressive strength of reinforced concrete. International Conference Fire Protection, Ostrava 2009.
  • [7] Drzymała T., Półka M.: Analiza zachowania się włókien polipropylenowych stosowanych do fibrobetonu w temperaturach pożarowych. Zeszyty Naukowe SGSP 2011, nr 42.
  • [8] Drzymała T., Bednarek Z.: Wybrane kierunki zastosowań fibrobetonu z dodatkiem włókien polipropylenowych poddanego oddziaływaniu wysokiej temperatury. Logistyka 2011, nr 6.
  • [9] Drzymała T., Bednarek Z.: Analiza wyników badań modułu sprężystości fibrobetonu z dodatkiem włókien polipropylenowych poddanego oddziaływaniu wysokiej temperatury. Logistyka 2011, nr 6.
  • [10] Diederichs U., Schneider U.: High temperature properties and spalling behaviour of high strength concrete. Proceedmgs of Fourth Weimar Workshop on High Performance Concrete, HAB Weimar. Germany, str. 219 – 235.
  • [11] Gawin D., Pasavento F., Majorana C.E., Scherefler B.A.: Modelling of degradation process of concrete structures at high temperature with application to tunnel fires. XXI Konferencja Naukowo-Techniczna „Awarie Budowlane”, Szczecin – Międzyzdroje 20 – 23 maja 2003.
  • [12] Hertz K.: Heat – induced explosion of dense concretes. Technical University of Denmark, Institute of Building Design, Report No 166, 1998.
  • [13] Hertz K.: Limits of Spalling of Fire Exposed Concrete. Fire Safety Journal 2003, vol. 38, str. 103 – 116.
  • [14] Hertz K.D.: Concrete strength for fire safety design. Magazine of Concrete Research 2005, nr 8..
  • [15] Kalifa P., Menneteau F.D., Ouenard D.: Spalling and pore pressure in HPC at high temperatures. Cem. and Conc. Res. 2000 (30) str. 1915 – 1927.
  • [16] Kalifa P., Chene G., Galle C.: High-temperature behavior of HPC with polypropylene fibers from spalling to microstructure. Cem. Concr. Res. 2001 (31), str. 1487 – 1499.
  • [17] Khoury G. A.: Design of concrete for better performance in fire. IMechE 1992, C438/042, str. 121 – 127.
  • [18] Khoury G.A.: Effect of Heat on Concrete – spalling. Materiały kursu „Effect of Heat on Con-crete” C1SM, Roma, June 9 – 13, 2003.
  • [19] Khoury G.A.: Polypropylene fibers in heated concrete. Part 2: Pressure relief mechanisms and modelling criteria. Magazine of Concrete Research 2008, 60, No. 3, April, str. 189 – 204.
  • [20] Phan L.T., Carino N.J, Duthinh D., Garboczi E.: Proceedings of International Workshop on Fire Performance of High-Strength Concrete. NIST. Gaithersburg, February 13 – 14, 1997.
  • [21] Phan L.T., Carino N.J.: Mechanical Properties of High-Strength Concrete at Elevated Temperatures. NISTIR 6725, Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, March 2001.
  • [22] Phan L.T.: High – Strength Concrete at High Temperature – An Overview, Utilization of High Strength Performance Concrete”. 6-th International Symposium Proceedings, vol. 1, June 2002.
  • [23] Uim F.J., Coussy O., Bazant Z.T.: The Chunnel Fire I: Chemoplastic Softening in Rapidly Heat-ed Concrete. Journal of Eng. Mech. ASCE 125, March 1999, str. 272 – 282.
  • [24] Uim F.J., Acker P., Levy M.: The Chunnel Fire. II: Analysis of Concrete Damage. Journal of Eng. Mech. ASCE 3 25, March 1999, str. 283 – 289.
  • [25] Woyciechowski P.: Analiza zjawisk skurczowych w pierwszej dobie dojrzewania tworzyw cementowych modyfikowanych domieszkami i dodatkami. Praca doktorska, Politechnika Warszaw-ska WIL, 1999.
  • [26] Praca naukowo-badawcza: „Wpływ temperatur występujących podczas pożaru na wybrane parametry wytrzymałościowe fibrobetonu”. S/E 422/8/2007, I i II Etap, kierownik naukowy Bednarek Z., SGSP Warszawa 2008/2009.
  • [27] Praca naukowo-badawcza: „Badanie wpływu temperatur występujących podczas pożaru na wytrzymałość fibrobetonu”. BW/E–422/8/2008, kierownik pracy Drzymała T., SGSP Warszawa 2008.
  • [28] PN-EN 13286-43: 2005. „Mieszanki niezwiązane i związane spoiwem hydraulicznym. Część 43: Metoda oznaczania modułu sprężystości mieszanek związanych spoiwem hydraulicznym”.
  • [29] ISO 6784: 1982. „Concrete – Determination of static moduls of elasticy in compression”.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e88c8b81-91fa-4783-8cf2-3bbf56910a06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.