PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Random eigenvibrations of beams with viscoelastic layers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to the study of the influence of random variation of model parameters of a beam with viscoelastic layers on probabilistic characteristics of its natural frequencies and dimensionless damping coefficients. The relationships between the model parameters and the dynamic characteristics of the beam were approximated by quartic polynomials based on the results of calculations using FEM, where beam finite elements were used, taking into account lamination of the beam. The nonlinear eigenproblem was solved using the continuation method. The calculation results for an example laminated beam are presented.
Rocznik
Strony
763--767
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
  • Łódź University of Technology, Faculty of Civil Engineering, Architecture and Environmental Engineering, Łódź, Poland
  • Institute of Structural Analysis, Poznan University of Technology, Poznań, Poland
  • Institute of Structural Analysis, Poznan University of Technology, Poznań, Poland
  • Institute of Structural Analysis, Poznan University of Technology, Poznań, Poland
  • Institute of Structural Analysis, Poznan University of Technology, Poznań, Poland
Bibliografia
  • 1. Arregui-Mena J.D., Margetts L., Mummery P.M., 2016, Practical application of the stochastic finite element method, Archives of Computational Methods in Engineering, 23, 1, 171-190.
  • 2. Galucio A.C., Deü J.-F., Ohayon R., 2004, Finite element formulation of viscoelastic sandwich beams using fractional derivative operators, Computational Mechanics, 33, 4, 282-291.
  • 3. Kamiński M., 2013, The Stochastic Perturbation Method for Computational Mechanics, John Wiley & Sons, Ltd., Hoboken, NJ, USA.
  • 4. Kamiński M., Guminiak M., Lenartowicz A., Łasecka-Plura M., Przychodzki M., Sumelka W., 2023, Stochastic nonlinear eigenvibrations of thin elastic plates resting on time-fractional viscoelastic supports, Probabilistic Engineering Mechanics, 74, 103522.
  • 5. Lewandowski R., Baum M., 2015, Dynamic characteristics of multilayered beams with viscoelastic layers described by the fractional Zener model, Archive of Applied Mechanics, 85, 12, 1793-1814.
  • 6. Łasecka-Plura M., 2023, Dynamic characteristics of a composite beam with viscoelastic layers under uncertain-but-bounded design parameters, Applied Sciences, 13, 11, 6473.
  • 7. Pawlak Z., Lewandowski R., 2013, The continuation method for the eigenvalue problem of structures with viscoelastic dampers, Computers and Structures, 125, 53-61.
  • 8. Stefanou G., 2009, The stochastic finite element method: Past, present and future, Computer Methods in Applied Mechanics and Engineering, 198, 9-12, 1031-1051.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e88c11d5-3f38-4716-bfeb-1c40e0f30d35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.