Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
One of the fundamental problems of modern geodesy is precise defi nition of the gravitational fi eld and its changes in time. This is essential in positioning and navigation, geophysics, geodynamics, oceanography and other sciences related to the climate and Earth’s environment. One of the major sources of gravity data is satellite altimetry that provides gravity data with almost 75% surface of the Earth. Satellite altimetry also provides data to study local, regional and global geophysical processes, the geoid model in the areas of oceans and seas. This technique can be successfully used to study the ocean mean dynamic topography. The results of the investigations and possible products of altimetry will provide a good material for the GGOS (Global Geodetic Observing System) and institutions of IAS (International Altimetry Service). This paper presents the achievements in satellite altimetry in all the above disciplines obtained in the last years. First very shorly basic concept of satellite altimetry is given. In order to obtain the highest accuracy on range measurements over the ocean improved of altimetry waveforms performed on the ground is described. Next, signifi cant improvements of sea and ocean gravity anomalies models developed presently is shown. Study of sea level and its extremes examined, around European and Australian coasts using tide gauges data and satellite altimetry measurements were described. Then investigations of the phenomenon of the ocean tides, calibration of altimeters, studies of rivers and ice-sheets in the last years are given.
Wydawca
Czasopismo
Rocznik
Tom
Strony
259--270
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- Polish Air Force Academy Department of Air Navigation 08–521 Dęblin, Dywizjonu 303
autor
- Koszalin University of Technology Chair of and Surveying 75–453 Koszalin, Śniadeckich 2
Bibliografia
- [1] Albertella, A., Savcenko R., Janjic T., Rummel R., Bosch, W. and Schröter, J. (2012). High resolution dynamic ocean topography in the Southern Ocean from GOCE. Geophysical Journal International, 190(2), 22-930. DOI: 10.1007/978-3-642-37222-3_10.
- [2] Andersen, O.B. and Knudsen, P. (2000). The role of satellite altimetry in gravity field modelling in coastal areas. Physics and chemistry of the earth. Part A-solid earth and geodesy, 25(1), 17-24. DOI: 10.1016/S1464-1895(00)00004-1.
- [3] Andersen, O.B., Knudsen, P. and Trimmer, R. (2005). Improved high resolution altimetric gravity fi eld mapping (KMS2002 global marine gravity fi eld, Book Series: International Association of Geodesy Symposia, 128, 326-331.
- [4] Andersen, O. B. and Cheng, Y. (2013). Long term changes of altimeter range and geophysical corrections at altimetry calibration sites. Advances in Space Research, 51(8), 1468-1477. DOI:10.1016/j. asr.2012.11.027.
- [5] Andersen, O.B., Knudsen, P., Kenyon, S. and Holmes, S. (2014). Global and arctic marine gravity field from recent satellite altimetry (DTU13). 76th European Association of Geoscientists and Engineers Conference and Exhibition 2014: Experience the Energy - Incorporating SPE EUROPEC 2014, pp. 3049-3053. DOI: 10.3997/2214-4609.20140897.
- [6] Bosch, W., Dettmering, D. and Schwatke, C. (2014). Multi-mission cross-calibration of satellite altimeters: constructinga long-term data record for global and regional sea level change studies. Remote Sensing, 6, 2255-2281. DOI: 10.3390/rs6032255.
- [7] Cheng, Y., Andersen, O.B. (2012). A new global ocean tide model and its improvements in shallow water and the Polar Regions. Advances in Space Research, 50 (2012), 1099-1106. DOI: 10.1016/j. asr.2011.11.016.
- [8] Deng, X., Andersen, O. B., Cheng, Y., Stewart, M. G. and Gharineiat, Z. (2012). Estimation of extreme sea levels from altimetry and tide gauges at the coast. 6th Coastal Altimetry Workshop, Riva Del Garda (Italy), 20-21 September 2012.
- [9] Garcia, E., Smith, W. H. F., Sandwell, D. T. (2014). Retracking CryoSat-2, Envisat, and Jason-1 Radar Altimetry Waveforms for Improved Gravity Field Recovery. Geophysical Journal International, 196 (3), 1402-1422. DOI: 10.1093/gji/ggt469.
- [10] Gharineiat, Z. and Deng, X. (2015). Application of the Multi Adaptive Regression Splines to integrate sea level data from altimetry and tide gauges for monitoring extreme sea level events. Marine Geodesy, 38(3), 261-276, DOI: 10.1080/01490419.2015.1036183.
- [11] Hwang, C., Hsu, H.J., Chang, E.T.Y., Featherstone, W.E., Tenzer, R., Lien, T.Y., Hsiao YS, Shih HC and Jai P.H. (2014). New free-air and Bouguer gravity fi elds of Taiwan from multiple platforms and sensors. Tectonophysics, 61, 83-93. DOI: 10.1016/j.tecto.2013.11.027.
- [12] Idris, N.H. and Deng, X. (2012). The retracking technique on multi-peak and quasi-specular waveforms for Jason-1 and Jason-2 mission near the cost. Marine Geodesy, 35(S1), 217-237. DOI: 10.1080/01490419.2012.718679.
- [13] Knudsen, P, Bingham, R., Andersen, O. and Rio, M-H. (2011). A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. Journal of Geodesy, 85, 861-879. DOI: 10.1007/s00190-011-0485-8.
- [14] Lee, H.K., Shum, C.K., Tseng, K.H., Huang, Z. and Sohn, H.G. (2013). Elevation changes of Bering Glacier System, Alaska, from 1992 to 2010, observed by satellite radar altimetry. Remote Sensing of Environment, 132: 40-48. DOI: 10.1016/j.rse.2013.01.007.
- [15] Mayer-Gürr, T., Savcenko, R., Bosch, W., Daras, I., Flechtner, F. and Dahle Ch. (2012). Ocean tides from satellite altimetry and GRACE. J. Geodynamics, pp. 59-60. DOI: 10.1016/j.jog.2011.10.009.
- [16] Richter, A., Mendoza, L., Perdomo, R., Hormaechea, J.L., Savcenko, R., Bosch, W. and Dietrich, R. (2012). Pressure tide gauge records from the Atlantic shelf off Tierra del Fuego, southernmost South America. Continental Shelf Res., 42, 20-29. DOI: 10.1016/j.csr.2012.03.016.
- [17] Sandwell, D.T., Müller, R.D., Smith, W.H.F., Garcia, E. and Francis, R. (2014). New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure, Science, 346 (6205), 65-67. DOI: 10.1126/science.1258213.
- [18] Savcenko, R. and Bosch, W. (2012). EOT11a - Empirical Ocean Tide Model From Multi-Mission Satellite Altimetry, DGFI Report No. 89.
- [19] Singh, A., Seitz, F. and Schwatke, C. (2012). Inter-annual water storage changes in the Aral Sea from multi-mission satellite altimetry, optical remote sensing, and GRACE satellite grawimetry. Remote Sensing of Environment, 123, 187-195. DOI: 10.1016/j.rse.2012.01.001.
- [20] Stammer, D., Ray, R.D., Andersen, O.B., Arbic, B.K., Bosch, W., Carrère, L., Cheng, Y., Chinn, D.S., Dushaw, B.D., Egbert, G.D., Erofeeva, S.Y., Fok, H.S., Green, J.A.M., Griffi ths, S., King, M.A., Lapin, V., Lemoine, F.G., Luthcke, S.B., Lyard F., Morison J., Müller M., Padman L., Richman J.G., Shriver J.F., Shum, C.K., Taguchi, E. and Yi, Y. (2014). Accuracy assessment of global barotropic ocean tide models, Reviews of Geophysics 52(3), 243-282. DOI: 10.1002/2014RG000450.
- [21] Sulistioadi, Y., Tseng, K. Shum, C., Hidayat, H., Sumaryono, M., Suhardiman A. and Sunarso, S. (2015). Satellite radar altimetry for monitoring small rivers and lakes in Indonesia, Hydrology and. Earth System Sciences, 19(1), 341-359. DOI: 10.5194/hess-19-341-2015.
- [22] Tseng, K.H., Shum, C., Yi, Y., Lee, H., Cheng, X. and Wang X. (2013). Envisat Altimetry Radar Waveform Retracking of Quasi-Specular Echoes Over Ice-Covered Qinghai Lake, Terrestrial Atmospheric and Oceanic Sciences (TAO), 24(4) Part I, pp. 615-627. DOI: 10.3319/TAO.2012.12.03.01(T1bXS).
- [23] Wang, X.W., Cheng, X., Gong, P., Shum, C., Holland, D.M. and Li, X.W. (2014). Freeboard and mass extraction of the disintegrated Mertz Ice Tongue with remote sensing and altimetry data. Remote Sensing of Environment, 144, 1-10, DOI: 10.1016/j.rse.2014.01.002.
- [24] Yang, Y., Hwang, C., Hsu, H.J. and D E Wang, H. (2011). A sub-waveform threshold retracker for ERS-1 altimetry: a case study in the Antarctic Ocean. Computers & Geosciences, 54(1), 113-118, DOI: 10.1016/j.cageo.2011.08.017.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e88a10b3-7e86-4548-90c2-08282294c23f